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Recent developments in expert system shells have the potential to markedly impact 

the use o f knowledge-based expert systems for complex tasks like engineering design. The 

knowledge required in an engineering design application is categorized and representations 

are formulated for each of the knowledge types. A prototype expert system implements 

each of the knowledge representations, integrating external knowledge sources -- a solid 

modeler and a materials database -- with a hybrid expert system shell.

The context chosen for the prototype expert system is the design of an injection 

molded plastic part; a subproblem, the design of a cantilever snap joint to join two 

components, is representative of engineering design problems. A designer, using a solid 

modeling system, develops a conceptual design and then invokes the expert system to 

determine geometric parameters for the design. The object-oriented, rule-based expert 

system integrates various knowledge sources for injection molding: heuristic rules, design 

specifications, geometric configurations and constraints, analysis software, and a material 

properties database. The expert system, using these knowledge sources interactively with 

the designer, determines the feasibility of the conceptual design, and modifies the design, 

iteratively, until an acceptable design is formulated.

The prototype system has illustrated the utility of expert system shells for 

engineering design problems. Expert system shells offer rich development environments 

with interfaces to programming languages (and hence to a multitude of existing computer- 

aided engineering software systems), access to databases, and graphical capabilities to 

assist in developing user interfaces. Expert system shells deal effectively with the 

complexity of engineering design, and they provide a design engineer, familiar with the 

heuristics of the problem, with an easy-to-use tool for rapid development of a design aid.
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CHAPTER 1 

INTRODUCTION

The computer has become an essential tool for the engineer. Computer-aided 

drafting (CAD), finite element modeling (FEM), and solid modeling, along with special 

purpose analysis programs are known as computer-aided engineering (CAE) tools. These 

tools are used in every facet of the engineering process — design, analysis, simulation, and 

manufacturing, and are implemented at two distinct levels depending on the capabilities of 

the hardware / software.

The lower level implementation of the CAE tools exists on DOS based, PC 

compatible personal computer systems, and generally includes software with restricted 

capabilities for the engineer: CAD, 3-D wireframe and/or surface modeler, and FEM. 

These systems are primarily used by smaller engineering firms. Larger firms, on the other 

hand, utilize more sophisticated implementations on UNIX based workstations, which are 

generally faster than personal computers and offer a broader range of features and 

capabilities. Software restricted to mainframe computers in the past now runs on 

workstations. Typically, CAE software in the workstation environment is an integrated 

system based on a three dimensional solid modeler. A mechanical designer, using an 

integrated tool such as Structural Dynamic Research Corporation (SDRC) I-DEAS™ or 

Dassault Systemes CATLA™, creates a three dimensional model. This model is then used 

as input data for the engineering analysis incorporated in the integrated design software. 

For example, the model can be analyzed using FEM or dynamic simulation techniques.

Regardless of the level of the CAE implementation, the key to productivity for both 

the designer and for the entire product development team is the degree of integration of the 

CAE tools. The computer-based design representation needs to be integrated with the 

analysis and manufacturing tools or exported directly to these tools, with minimal user 

intervention. Manufacturing firms are currently using solid models to automatically

1
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generate machining code for milling machines, turning centers, and other computer 

controlled manufacturing equipment

Another, emerging, key to increasing productivity is concurrent engineering (also 

known as simultaneous engineering). Concurrent engineering decreases the time required 

to develop a product by considering the manufacturing process early in the design of the 

product, or concurrently with the product design. In fact, this approach takes into account 

not just the functionality of the product, but its quality, manufacturability, testability, and 

maintainability.

Recent developments in Artificial Intelligence (AI), and more specifically in 

knowledge-based expert systems, promise to significantly extend the use of CAE tools in 

the interface between design and manufacturing. Traditional programming concepts and 

algorithmic procedures do not lend themselves to this interface; the field of AI is attempting 

to produce new technology to address these new concerns. Not only are expert systems a 

part of AI, but AI also includes natural language processing, image processing, robotics, 

and neural networks. However, the research presented here is limited to knowledge-based 

expert systems.

A knowledge-based expert system (KBES) differs from conventional software in 

several important ways. One definition widely used for expert systems is:

. . .  interactive computer programs incorporating judgment, experience, rules 

of thumb, intuition, and other expertise to provide knowledgeable advice 

about a variety o f topics (Gaschnig, Reboh, and Reiter 1981,7)

Expert systems are symbolic processors, in which the knowledge base, or expert 

information, is separate from the methods for manipulating the knowledge base.

Generally, programming languages or tools incorporate the methods used to manipulate the 

knowledge, so the developer concentrates on constructing the knowledge base, and not on 

the procedures for processing the knowledge. An expert system uses the knowledge base 

to reason about a problem in a manner similar to the process used by an expert in solving 

the problem.
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ENGINEERING DESIGN

Engineering design is a creative process, best conducted by a knowledgeable 

designer with years of experience. Through his experience, the designer has developed a 

set of design guidelines, or heuristics, that he applies to new design situations in 

developing a conceptual design. Often, for an experienced designer, this conceptual design 

is near to the final, optimal design solution. Using analysis tools, the design is evaluated, 

and if  the original design specifications have not been met, the design is modified. An 

expert designer will again use his judgment and expertise to modify the design. The 

modified design is evaluated, and this iterative process continues until an acceptable design 

is accomplished. Sometimes the specifications must be relaxed in order to arrive at an 

acceptable design; again, the expert uses his knowledge to adjust the specifications.

A difficulty encountered in applying expert systems to a design problem is acquiring 

the expert knowledge for the system. Often an expert cannot express how, or why, he does 

something; typically, he has not thought about the processes he uses to solve a problem.

Engineering design is clearly becoming more of a team effort because the amount of 

data and the scope of considerations involved in a significant project transcend both the 

breadth and depth of any one individual’s experience. The segmentation of a design 

project, for the numerous designers working on the project, is facilitated by database 

structures and file management systems incorporated in the integrated software. The team 

concept is often informal in smaller firms, but can be very formal and highly documented in 

larger firms.

Problems encountered in mechanical design share some common characteristics. 

They often involve a choice of manufacturing processes and a wide choice of materials, and 

the mechanical designs are often fairly complex, three-dimensional artifacts. Mechanical 

design software attempts to integrate both the material property data and manufacturing 

process simulations in order to assist an individual designer.

STATUS OF EXPERT SYSTEMS IN DESIGN

Early expert systems have been applied to problems such as an advisor for a finite 

element program, and monitors or controls for manufacturing and chemical processing. 

However, engineering design differs from these types of problems in two basic ways: the
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diversity of the information (or knowledge) and the complexity of the engineering systems. 

In engineering design there is no one, correct solution, but usually an optimum solution can 

be identified by applying constraints like economics, physical limitations, and 

manufacturing considerations.

Few expert systems exist for the engineering problem solving tasks of planning and 

design, and most of the ones that do exist have been implemented using programming 

languages or environments. Representative implementations for these tasks are discussed 

in Chapter 4. Programming languages or environments have not promoted the use of 

expert systems for design problems since they are relatively difficult to use, and are 

particularly onerous to the typical engineer with limited programming skills. Tools are 

available that are appropriate, reasonable to use, and that facilitate rapid development of 

expert systems for complex tasks such as engineering design. Expert system shells fit 

these requirements, but have not been traditionally applied to engineering design problems.

The knowledge required in a mechanical engineering design problem is a 

combination of design rules and guidelines, analysis software incorporating engineering 

models and governing equations, and database information about material properties and 

specifications. The knowledge is provided by multiple sources, requiring a variety of 

specialized knowledge representations, and needs to be integrated for fully functioning 

systems.

Current expert system implementations make little use of data generated in existing 

applications. Computer-aided design and solid modeling systems are widely used by 

engineers, and produce geometric and feature databases. Databases for material selection 

are also important tools for design, as well as the analysis information generated by 

software such as finite element modeling. Since all of these tools produce data that can 

significantly enhance the capabilities of an expert system for design applications, they 

should be integrated with the expert system.

RESEARCH OBJECTIVES

This research investigates the feasibility of applying knowledge-based expert 

systems to engineering design problems. A variety of tools currently exist for the expert 

system developer, ranging from programming languages which require considerable
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understanding of the fundamental theory involved in expert system programming, to expert 

system shells, which can be thought of as high level expert system languages. Expert 

system shells appear to offer rich development environments with interfaces to 

programming ianguages, access to databases, and graphical capabilities to assist in 

developing user interfaces. Expert system shells are easy-to-use tools for the typical 

engineer with limited computer skills, and provide a viable tool for developing expert 

systems.

The goal of this research is to develop a generic approach, or template, for expert 

system applications, based on expert system shells, that can be used by engineers in day- 

to-day applications. To accomplish this goal, the steps in developing an expert system 

application for engineering design problems must be formulated. The following tasks for 

expert system development are explored, and formalized, in this research:

• investigate the use of expert system shells for design problems

• categorize the knowledge required to solve design problems

• formulate representations for the knowledge

• integrate the expert system with external databases and solid modeling software

• develop interactive capabilities, as well as graphical interfaces.

RESEARCH FOCUS

This research focuses on manufacturing processes, which are integrally involved in 

product design. Since the specific details of the manufacturing process impact the 

appearance, strength, and long term stability of a product, the process needs to be 

considered during the product design. Thus the designer needs to have detailed knowledge 

of the specific manufacturing process.

Manufacturing processes have recently evolved from processes used since the 

industrial revolution for the traditional materials of metals, metal alloys, and wood.

Plastics have been used since WWII; followed by composite materials in the last two 

decades. The associated manufacturing methods of injection molding, blow molding, and 

thermal forming, which did not exist prior to the 1950’s, are responsible for a major 

portion of today’s consumer goods. However, the number of designers experienced with 

these new materials and methods has not kept pace with the penetration of these materials
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into the marketplace. Therefore, designers experienced with the traditional materials, as 

well as novice designers, require assistance employing the newer materials in their designs. 

The difficulty of using these materials in product design is compounded by the vast number 

of plastic materials available, which currently exceeds 18,000. The existing materials are 

being alloyed and blended by suppliers to create new materials at a very rapid rate.

The design area selected for this research is injection molded part design. Previous 

work done in this area (Kmetz 1986) provides the foundation for this research. Kmetz 

developed software for adjusting conceptual part designs, using a set of generally accepted 

rules applied by plastic designers. His work incorporated the rules in algorithmic 

procedures and did not use an expert system approach. His application was also limited to 

those rules which can be implemented in algorithmic procedures. A major source of his 

design information is in the design handbooks which are generally available from 

individual material suppliers. These handbooks contain the experience of expert designers. 

Another source of information required for his work is the material property information 

which can be found in suppliers’ manuals and databases and in independently published 

materials.

A successful plastic product begins with a good part design, which is a result of a 

thorough knowledge of design as well as an understanding of the process and material 

being used. (Beall 1990) In feature design, a complex part is decomposed into its basic 

elements: the nominal wall, projections off the nominal wall, and depressions into the 

nominal wall. The nominal wall can be simplified to a set of flat plates, no matter how 

complex the shape is. All projections -- reinforcing ribs, pegs, gussets, snap joints — can 

be addressed with similar guidelines. Likewise, all depressions are viewed as similar 

design problems. Other plastic part features are combinations of these three basic elements; 

therefore, guidelines can be used to design each basic element, and the elements assembled 

to create complex geometries. Design guidelines often vary depending on the materials 

chosen for the plastic part, and pertain to the moldability of a part

The scope of the research presented here is reduced to a manageable level, but 

demonstrates the viability of expert systems for design applications, by limiting the expert 

system application to one basic element of a plastic part. The design of a specific
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projection, a cantilever snap joint for joining two injection molded plastic parts, involves 

the knowledge sources found in a generic design problem, and was selected as the focus of 

this effort.

To design a snap fit, the experienced plastics designer uses a representative set of 

the knowledge used in plastic part design problems. Heuristics, or the design rules, are the 

basis for a conceptual design, or initial configuration. The conceptual design depends on 

the material selected for the part and related material properties, and the functionality of the 

part, i.e., the specifications for the design. Governing equations assist the designer in 

determining the appropriate geometric relationships. Representations for the various 

knowledge sources will be developed, providing a template for design problems in general. 

PROTOTYPE DEVELOPMENT

The feasibility of using an expert system shell for engineering design problems can 

be explored by building a prototype expert system. The first step is to identify a design 

problem for the prototype implementation. This problem should be representative of 

typical engineering design problems, to demonstrate the viability of expert systems as CAE 

tools in the mechanical design area. It should also be confined to a fairly narrow domain, 

to facilitate the implementation of the expert system. The design should involve each of the 

knowledge types in an engineering design problem, to develop a template that can be used 

in other design applications. If each knowledge type is incorporated in the prototype, 

extensions are easily made to the template for more complex problems. The context 

selected for this research, injection molded part design, fits these specifications.

Another important task in developing the prototype is selecting an appropriate tool 

for the expert system implementation. Many expert system shells are available, offering a 

range of features and capabilities. The prototype should demonstrate the ease with which a 

typical engineer can develop an expert system for design applications.

A survey was conducted to identify expert system shells which provide the 

necessary development environment for this research. The criteria used in evaluating 

various products included ease of use, range of available features, implementation 

platforms, and cost The tool selected was Kappa PC™, available from IntelliCorp, an 

early leader in developing software for expert system applications. Kappa PC runs on IBM
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PC® compatible hardware. Another product available from IntelliCorp, ProKappa™, is a 

workstation version of an expert system shell. Although IntelliCorp offers both products, 

they were developed independently, and are not completely compatible. Therefore a system 

developed on a PC cannot be migrated to a workstation without conversion efforts.

An important aspect for software acceptance is the user interface. A  graphical 

interface can make a system easier to leam and easier to use; extensive explanation facilities 

build a user’s confidence in the system, and thus promote its acceptance. The expert 

system should accommodate use by novices, as a tutor, and by experts, as a design aid.

An interactive interface allows the user to participate in the design process, instead of 

merely observing the results.

The resulting exper system is a computer-aided engineering design aid. The expert 

system, using the knowledge sources interactively with the designer, assists the design 

engineer in developing a conceptual design and determining its feasibility. The expert 

system described here not only incorporates design rules (both heuristics and governing 

equations), but interfaces to a materials database and to a solid modeling package. The 

expert system iteratively evaluates and modifies the design, if  necessary, until the 

specifications are sufficiently accommodated. The prototype system does not identify an 

optimal solution, but this functionality can be easily inc orporated in the expert system by 

including additional rules that address constraints related to conditions for optimal design.

The prototype expert system is implemented in a fairly narrow domain. To be an 

effective design tool, the research must be extended from designing a basic feature to 

designing more complex parts and their corresponding mold designs, incorporating 

sophisticated analysis techniques for flow within a mold and structural properties. 

Extending the expert system to other manufacturing processes will produce an even more 

valuable tool. However, the value of this research is in establishing the guidelines, or 

templates, for developing expert system tools for the design process.1

1 This research has been accepted for publication (Steadman and Pell 1994; Steadman 1994).
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CHAPTER 2

KNOWLEDGE-BASED EXPERT SYSTEMS:
AN OVERVIEW

Artificial Intelligence (AI) is an area of computer science dealing with the emulation 

of human thought processes. AI is concerned with understanding human problem-solving 

strategies and incorporating (or simulating) these strategies in computer programs. 

Knowledge-based expert systems (KBES) are a specific application of AI. Edward 

Feigenbaum, generally regarded as the father of expert systems, defines an expert system 

as (1981,221):

an intelligent computer program that uses knowledge and inference 
procedures to solve problems that are difficult enough to require significant 
human expertise for their solution.

Another definition is:

. . .  solves real-world, complex problems using a computer model of expert 
human reasoning, reaching the same conclusions that the human expert would 
reach if faced with a comparable problem (Weiss and Kulikowski 1984,1).

However, the most widely accepted definition is given by Gaschnig, et al. (1981):

Expert systems are interactive computer programs incorporating judgment, 
experience, rules of thumb, intuition, and other expertise to provide knowledgeable advice 
about a variety of tasks.

These definitions also apply to many existing computer programs, which are not 

usually thought o f as expert systems. Most authors make this distinction by defining an 

expert system to be a program in which the knowledge base, or expert knowledge, is 

separated from the methods for applying the knowledge, i. e. the inference mechanism, 

reasoning mechanism, or rule interpreter. In fact, Feigenbaum, McCorduck, and Nii 

(1988,7) state that the power of an expert system depends on the amount and quality of the

9
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knowledge it possesses, not on the particular formalisms and inference schemes it 

possesses.

Other characteristics of expert systems include (Adeli 1988,6; Fenves 1986, 3; 

Maher 1987,5):

• knowledge-intensive programs

• knowledge usually divided into many separate rules

• highly interactive

• user-friendly, intelligent, user interfaces

• explanation facility for reasoning 

° incremental growth capability

• knowledge is readable and understandable

Expert systems can provide advice, answer questions, and justify their conclusions. The 

differences between conventional programming and expert systems are summarized in 

Table 2.1 (Maher 1987,4).

Table 2.1. Characteristics of Conventional Programs vs. Expert Systems

CONVENTIONAL PROGRAMS EXPERT SYSTEMS

Representation and use of data Representation and use of knowledge

Knowledge and control integrated Knowledge and control separated

Algorithmic (repetitive) process Heuristic (inferential) process

Manipulation of large databases Manipulation o f large knowledge bases

Programmer ensures Knowledge engineer relaxes uniqueness

uniqueness and completeness and completeness constraint

Midrun explanation impossible Midrun explanation possible

Numerical processing Symbolic processing

Solving complex problems involves a large knowledge base and extensive 

searching of that knowledge. A human expert rapidly narrows the search by recognizing 

patterns and using appropriate heuristics, or rules o f thumb. With the technology currently
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available, expert systems are limited to narrow, highly specialized, well defined domains 

(contexts). They are not able to reason broadly over a field of expertise. With future 

improvements in computer memory size and speed, this limitation will gradually disappear, 

and expert systems will be applied to wider domains, and more complex problems. Expert 

systems are currently expensive to implement, requiring significant investments of human 

and capital resources. These costs will also diminish with technological advances.

Expert systems are employed in many engineering fields for a variety of reasons. 

They are used to compile and archive knowledge from employees and external experts to 

develop intellectual capital for a firm. Expert systems can be available any time of the day 

or night, not just during business hours; access can be distributed to many employees and 

locations. They provide consistent answers, and can be updated with new expertise as new 

policies or methods are implemented. They do not bias judgments, or jump to conclusions, 

but systematically consider all possibilities. They attend to details, and may produce 

several solutions for a particular set of conditions.

However, expert systems cannot reason from axioms or general theories, or by 

analogy. They do not learn, and they lack common sense. The performance of an expert 

system rapidly deteriorates when it is extended beyond the narrow task that it was designed 

to perform. (Harmon and King 1985,7)

Companies using expert systems have measured both qualitative gains and 

quantitative gains. Qualitatively, expert systems have improved not only the quality, but the 

consistency of designs and their compliance with standards, and have encouraged 

innovation among the users of the systems. Quantitatively, less time is spent in 

bookkeeping tasks resulting in more productive time for engineering and designing tasks; 

design data are available earlier in the product cycle, and can be used in downstream tasks 

such as detailed documentation preparation, material specifications, and job costing. In 

measuring productivity, one example is given by the Babcock and Wilcox Power 

Generation Group in the design of heat transfer components where expert systems have 

decreased, by two-thirds, the time to model the components; in addition, detail drawings 

are automatically generated along with other manufacturing documents. (CIME 1989)
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ARCHITECTURE

An expert system consists o f three main components: a knowledge base, an 

inference engine (search strategy), and a domain (or context). Additional components may 

include a user interface, an explanation facility, and a knowledge acquisition facility.

Figure 2.1 illustrates these components.

The knowledge base consists of the facts and the heuristics about the domain. The 

heuristics include rules of thumb, and the strategies limiting the search for solutions in large 

problem spaces, which are usually empirical, and are based on experience and intuition, not 

mathematical or scientific proof. The inference engine controls the reasoning operations, 

i.e., it is the executive for the expert system. The inference engine fires (applies) the rules, 

and may alter the knowledge base.

KNOWLEDGEBASE B - S DOMAIN

iINFERENCE ENGINE

KNOWLEDGE EXPLANATION USERACQUISITION
FACITLITY FACILITY INTERFACE

J

(  EXPERT ) c I
USER J

Figure 2.1. Architecture of an Expert System
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The user interface should provide for several user-modes: client — getting answers 

and explanations to problems, tutor — improving or increasing the system’s knowledge, 

and pupil — harvesting the knowledge base for human use. (Michie 1980,370)

KNOWLEDGE BASE. The knowledge can be represented with various schemes: 

production rules, predicate logic, semantic networks, frames, and object-oriented 

frameworks. When several, independent, experts cooperate to solve a problem, a 

blackboard model is used. A brief discussion of these schemes follows.

Production Rules. Production rales are IF-THEN (or condition-action, or 

antecedent-consequent) statements, where satisfaction of one or more conditions results in 

one or more actions. Each rule is an unordered, data sensitive unit, contrasted with the 

sequenced instructions of procedural languages. The conditions are stored in a database, 

and the actions modify the contents of the database when they are invoked. (Newell and 

Simon 1972), (Davis and King 1977)

Predicate Logic. The simplest form of logic is propositional logic. Propositions 

can be either TRUE or FALSE and can be connected by logical operators (and, or, not, 

implies, equivalence) to form a propositional calculus of constants, functions, and 

predicates. Predicates are used to represent relationships, e.g., SUM (A, B, RESULT). 

Predicate calculus is a structured extension of propositional calculus employing variables 

and quantifiers (all and some). It introduces specific roles for the elements of the 

propositional calculus and allows for deductions to be calculated; the characteristics of a 

particular object can be deduced from more general statements about the attributes of some 

or all objects in a set to which the object belongs. (Dym and Levitt 1991)

Semantic Networks. A semantic network is composed of a set o f nodes, 

representing objects and their descriptors, and a set of links (semantics) connecting the 

nodes, representing the relations among the nodes. Commonly ,ed links are is-a and has- 

a links. Semantic networks have been used primarily in natural language research.

(Quillian 1968)

Frames. A frame (or schema) is used to describe an object, and is a special case of 

a semantic network. It is composed of slots which store information about the object. This 

information may be default values, pointers to other frames, sets of rules, or procedures.
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Frames may be linked in a tree-like structure (network), thus allowing inheritance of slots 

and their values from one level of nodes to subsequent levels. (Minsky 1975)

Object-Oriented Frameworks. Object-oriented programming involves the use of 

objects, which are extensions of frames tightly coupled with operations (methods). Each 

object is described by a number of attributes, which may be integer or real values, strings, 

or complex data structures. The behavior of an object is defined by methods, or 

procedures which manipulate the state of an object Objects interact with each other by 

sending messages to execute one or more methods. Objects are arranged in a hierarchy of 

classes and subclasses having similar attributes, with lower classes inheriting methods and 

attributes from higher classes. Subclasses are specializations of their parent classes.

(Stefik and Bobrow 1985)

Blackboard. The blackboard model was developed to provide a reasoning 

mechanism when multiple knowledge sources exist The blackboard serves as the location 

for posting communications (messages) between the various knowledge sources. It also 

keeps track of the current state of the problem. The blackboard model is generally used for 

complex problems that must be partitioned into subproblems (knowledge sources). (Nii 

1986)

The knowledge representation scheme should be chosen as the first step in 

implementing an expert system. In order to choose an appropriate scheme, the knowledge 

engineer must first organize the knowledge, gaining a familiarity with the domain. Some 

general guidelines in choosing the appropriate representation are:

• simple production and logic systems are good for poorly understood domains, 

where the knowledge structure cannot be well described

• structured production and frame systems increase run-time efficiency and reduce 

the effect of the volume of knowledge on run-time, but are more difficult to implement

° logic systems are more difficult to implement for mathematical expressions.

INFERENCE ENGINE. The inference engine selects which rules to examine (in 

either a forward or backward direction), evaluates the rules, generates new facts or 

retrieves facts needed by rules, to generate solutions for a set o f conditions. When more 

than one rule is eligible for firing, several options are commonly implemented for conflict
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resolution: breadth-first, depth-first, and best-first. Other strategies used to select which 

rules to examine include assigning rule priorities, using the timing of candidacy, the textual 

position, and the applicability of the rules to the task at hand. (Winston 1984)

Forward and Backward Chaining. In a forward chaining strategy, the rules are 

searched to reach conclusions from information provided by the user, facts in the 

knowledge base, and previous conditions. As conclusions are reached, premises or other 

rules are satisfied, and the search continues until no more conclusions are reached. Since 

this strategy works from the data to the goal state, it is also called data-driven. Forward 

chaining is appropriate for problems where the solution is chosen from a very large number 

of potential solutions, and a small amount of information from the user is available.

In a backward chaining strategy, a goal is selected and then the rules are searched 

for those rules whose consequent actions match the goal. Backward chaining is also called 

goal-driven, and is appropriate for problems with a limited number o f solutions, or when 

all the available data does not need to be analyzed.

Most real problems use a combination of both strategies. A fully integrated system 

allows the expert system developer the flexibility to solve complex problems.

Search Options. The hierarchy of rules can be arranged in a search tree where the 

search for a solution is a traversal through the tree. A search can identify a single path 

through the tree, or exhaust all o f the possible paths (or solutions) through the tree. 

Terminating the search when an acceptable solution has been identified is much more 

efficient, but does not necessarily identify an optimum solution.

In a breadth-first search, the nodes (or rules) are searched layer by layer, one layer 

at a time. Thus all of the rules at a given depth are examined to see if they match the 

conditions for the solution, before any of them are expanded. Breadth-first search is most 

effectively used when most of the solutions are at relatively shallow depths of the tree. 

When the solutions are fairly deep in the tree, breadth-first requires extensive processing of 

a large number of layers before any solutions are identified.

For each node in a depth-first search, a path to a lower node is picked, ignoring all 

alternatives at the same level, thus shooting straight down the tree along any path. When a 

branch terminates, another path is found, until all alternative paths have been located.
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Depth-first search can also be fairly expensive when the solution is located along the last 

paths identified, or when the first paths are relatively long.

In a best-first search, the next node added to a path is the “best” node available. All 

the available nodes are examined, and the node to expand is selected according to some 

criteria. Best-first search is more likely to find the shortest paths than other methods, since 

it always chooses the node closest to the solution criteria.

TOOLS FOR BUILDING EXPERT SYSTEMS

The expert system developer has a range of tools available to use for the 

representation and control of the knowledge: programming languages, programming 

environments, and expert system shells. These tools provide varying levels of support for 

explanation facilities, graphics, and other features influencing the ease of use of the expert 

system. Many of the tools provide for interfaces to existing databases, Computer-Aided 

Drafting (CAD) packages, and to the multitude of analysis software (such as finite element 

modeling). These interfaces, as well as facilities for knowledge acquisition and uncertainty 

management significantly impact the ease of development of the system.

PROGRAMMING LANGUAGES. Procedural languages like FORTRAN and 

BASIC are very effective for programming mathematical, algorithmic tasks, but are not 

particularly useful for symbolic reasoning. LISP (LISt Processing) and PROLOG 

(PROgramming LOGic) are generally used by AI programmers. PROLOG, used mainly 

by European and Japanese programmers, contains constructs to manipulate logical 

expressions, while LISP has operators to facilitate list processing. C is emerging as an 

alternative to LISP, due to its portability and ability to interface with existing analysis 

programs, which are usually written in FORTRAN or C.

PROGRAMMING ENVIRONMENTS. A  programming environment is closely 

associated with a particular language, and contains chunks of the code (similar to 

subroutine libraries) that are useful for particular tasks. Most environments can also be 

classified as hybrid tools. Hybrid tools combine a rule-based approach with procedure- 

oriented programming and object-oriented programming. These tools are well suited to 

engineering problems, which are generally complex problems requiring a variety of 

representation schemes.
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EXPERT SYSTEM SHELLS. Expert system shells facilitate the rapid development 

of expert systems. They incorporate specific knowledge representation schemes, inference 

mechanisms, and control. Early shells were developed by stripping the knowledge from an 

expert system. Many of the available commercial shells have facilities to interface to 

existing databases and to procedural languages, as well as extensive graphics capabilities.

KNOWLEDGE ACQUISITION. Knowledge acquisition is the transfer of 

problem-solving expertise from some knowledge source — human experts, textbooks, 

databases -- to a program. This expertise is a collection of facts, procedures, and 

judgmental rules about the domain, and is often very difficult to either extract from a human 

expert or to represent in a knowledge representation. This task can be automated with 

inductive inference methods that generate new rules from training examples. The research 

in this area is in its infancy, however, and has exposed difficulties in achieving consistency, 

correctness, and completeness in knowledge bases. Computer aids do exist to assist in 

knowledge acquisition: knowledge-base editors and interfaces, explanation facilities, and 

knowledge-base revision. Sophisticated editors are being developed that facilitate 

instruction and check for semantic inconsistencies. These editors, along with a facility to 

explain the basis for reasoning, affect the acceptance by the user and/or the expert 

Semantic consistency checks and automated testing help in updating the knowledge base, to 

minimize introducing new errors into the expert system. (Buchanan et al. 1983,149 -157) 

UNCERTAINTY MANAGEMENT. The knowledge in the expert system may not 

be exact Several methods are commonly used to deal with uncertain or incomplete 

knowledge: certainty factors, Bayes theorem, and fuzzy logic. Certainty factors are 

informal measures of confidence; Bayes theorem provides a method for calculating 

probabilities; and fuzzy logic applies to sets of information with unsharp or ‘gray’ 

boundaries. (Bonissone and Tong 1985,241 - 250)

HARDWARE REQUIREMENTS. Early expert system implementations were on 

hardware devoted to artificial intelligence tasks, such as Symbolics, LISP Machines Inc. 

(LMI), or XEROX AI. These specialized machines are relatively expensive and are not 

very useful for general purpose computing tasks. Expert systems are also available on 

mainframes, minicomputers, workstations, and PC level machines. Some systems are
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available on all levels of hardware, an advantage in developing a system for distribution. A 

system can be developed on a VAX class machine with a rich development environment, 

and then implemented on PC class machines at relatively low cost

PERFORMANCE. Expert system performance is inversely proportional to the 

number of elements being reasoned about, and is dependent on the knowledge 

representation scheme, how structured the knowledge base is, and obviously, the hardware 

chosen. Expert systems are knowledge intensive and have considerable memory 

requirements. Misusing a tool, i.e., using forward chaining in a backward chaining 

environment, can significantly impact the performance of the system. In general, an 

efficiently written production system is more efficient than a hybrid tool using rules.

The performance of a system is also dependent on human factors: ease o f use, 

familiarity, understandability. Its productivity is associated with the ability to provide 

assistance. Other factors influencing performance are portability and extensibility.

A HISTORY OF EXPERT SYSTEM APPLICATIONS

A brief discussion of some early expert system applications illustrates the historical 

development of expert systems. Table 2.2 summarizes these applications. More recent 

works are outlined in Chapter 4.

Table 2.2. Historical Expert System Development

SYSTEM DATE DEVELOPER

DENDRAL

MACSYMA

HEARSAY-I & II

INTERNIST

MYCIN

PROSPECTOR

SACON

PUFF

R1 (XCON)

1965 - 1979 Buchanan & Feigenbaum
Stanford Heuristic Programming Project 

1968 - 1982 Engleman, Martin, & Moses 
MIT

1970 - 1976 Erman, Hayes-Roth, Lesser, & Reddy 
Carnegie Mellon University 

1974 Pople & Myers
University o f Pittsburgh 

1976 Shortliffe
Stanford Heuristic Programming Project 

1978 Duda, Gaschnig, Hart, et al.
Stanford Research Institute (SRI) International

1978 Bennett & Engelmore
Stanford Heuristic Programming Project

1979 Kunz, Aikins, Shortliffe
Stanford Heuristic Programming Project 

1981 McDermott
Camegie-Mellon University & DEC
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DENDRAL originated the fundamental concept of expert systems, manipulating 

large amounts of expert, heuristic knowledge in a computer program. The program is 

designed for use by organic chemists to infer the molecular structure of complex organic 

compounds from their chemical formulas and mass spectrograms. The heuristic 

knowledge of expert chemists is incorporated into a rule-based system. DENDRAL’s 

success proved that expert systems could be developed and launched researchers on the 

study of knowledge-based systems. (Buchanan & Feigenbaum 1978)

MACSYMA is a large, interactive computer system designed to assist 

mathematicians, scientists, and engineers in solving complex mathematical problems.

Inputs to MACSYMA are formulas and commands, and outputs are solutions to symbolic 

problems. MACSYMA is widely used by researchers in government laboratories, 

universities, and corporations. (Rand 1984)

HEARSAY-! & II are speech understanding systems. Each knowledge source 

contributes information to a common working memory, or blackboard. HEARSAY-II 

demonstrated how multiple knowledge sources could be integrated in very complex 

problem solving. (Erman 1980)

INTERNIST assists a physician in making multiple and complex diagnoses in 

general internal medicine given a patient’s history, symptoms, or laboratory test results. 

The system is one of the largest medical expert systems developed, and therefore uses a 

structured approach for the knowledge base. INTERNIST must consider not only a very 

large number of diseases, it must also consider all the possible combinations or interactions 

among these diseases. Because of the structure and size o f the knowledge base, the 

program does not perform very well; additional development has been done with the 

successor, CADUCEUS, to make the program more attractive to physicians. (Pople, 

Myers, and Miller 1975)

MYCIN is the most famous of the early expert system projects. It diagnoses blood 

and meningitis infections and recommends appropriate drug treatment, on the basis o f an 

interactive dialogue with a physician about a particular case. Each rule has an associated 

certainty factor, indicating the expert’s level of confidence in the rule. It also has an 

explanation facility to justify the inferences made by the system. MYCIN exemplifies the
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essence of a typical expert system. The developers subsequently built EMYCIN — an 

empty MYCIN, or MYCIN without its knowledge base. EMYCIN contains all the 

machinery needed to reason about a knowledge base and to conduct consultations with a 

user. (Shortliffe 1976)

PROSPECTOR aids the geologist in finding ore deposits from geological data. A 

combination of rule and semantic networks are used to represent the knowledge. The 

system contains a knowledge acquisition system (KAS) to facilitate the acquisition of 

knowledge. Information is either requested from the user, or it can be volunteered. (Duda, 

Gaschnig, and Hart 1979)

SACON advises engineers on the use of the finite element structural analysis 

program MARC. SACON was developed using EMYCIN to evaluate EMYCIN’s 

environment for diagnostic applications in other domains. (Bennett and Engelmore 1979) 

PUFF diagnoses the presence and severity of lung disease in a patient by 

interpreting measurements from respiratory tests administered in a pulmonary function 

laboratory. PUFF was built to demonstrate the practicality of using the shell EMYCIN to 

prototype additional systems. (Kunz et al. 1978)

RUXCQN) assists in configuring VAX computer systems for Digital Equipment 

Corporation, and is the largest, most mature rule-based expert system in operation. From a 

customer’s order, R1 decides what components must be added to produce a complete 

operational system and determines the spatial relationships among all the components. It 

also outputs a set of diagrams of these relationships. It was developed using a 

programming environment tool, OPS5. (McDermott 1982)

SUM M ARY

AI research has been underway for more than three decades, but it has only been 

since the late 80’s that its impact has been measurable. The most notable and visible results 

are in the area of expert systems, the implementations of which have exploded in the past 

several years. To effectively use expert systems, we must understand their capabilities and 

limitations; they are not the solution to every problem. They are, however, a viable 

technology providing a new approach for solving many decision problems.
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CHAPTER 3

BUILDING A KNOWLEDGE-BASED EXPERT SYSTEM

The first step in developing an expert system application is to determine if  the 

problem is suitable to an expert system. Some problems are better solved by conventional 

programming tools; other problems exhibit characteristics that are better solved by expert 

systems. Once an expert system approach is selected, the process of implementing the 

system, or knowledge engineering, begins. The developer, in this case also called a 

knowledge engineer, is responsible for acquiring the knowledge and embedding it in an 

expert system. The knowledge engineer must choose an appropriate tool for the expert 

system implementation, and then develop a prototype to test the implementation. 

CHARACTERISTICS OF EXPERT SYSTEM PROBLEMS

Problems to be solved by expert systems share some important characteristics (Dym 

1985,18; Winston 1987,15 - 16):

• the domain knowledge is highly subjective, judgmental, and rich in reasoning

• the knowledge cannot necessarily be coded or organized

• an expert is much better at solving the problem than an amateur

• the problem is clearly defined, in a fairly narrow domain; the expert system’s 

complexity will naturally grow as the system evolves

• adequate data is available

• at least one expert is available, and committed, to the project and can explain the 

reasoning used in solving the problem

• the task is not too easy nor too difficult for the expert to solve; it should take a 

human expert from 1-12 hours to solve the problem.

Conventional programming techniques have not been successfully applied to problems 

exhibiting these characteristics, and expert system implementations will not be successful 

unless these criteria are met.

21
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Even though expert system developers experience some of the same problems that 

conventional system developers experience, some myths about expert systems have arisen 

(Fox 1990,13 - 16). Among these myths are that expert systems do not make mistakes, 

small prototype systems can be scaled up into full-scale solutions, expert systems can be 

easily verified and validated and are easy to maintain, and that if  an expert exists, an expert 

system can be created. These myths are worth noting, in order to avoid making mistakes, 

and thus to build more effective systems.

TASKS

The types of problems that have been solved by expert systems can be classified as: 

interpretation, diagnosis, monitoring, control, prediction, repair, instruction, planning, and 

design. These tasks can be grouped into derivation problems and formation problems.

DERIVATION. Most of the early expert systems solved derivation problems. The 

outcome, or goal, exists in the knowledge base and the solution is to identify the path to the 

goal. Typical tasks are:

• Interpretation. Analyzing data to determine the meaning. The data is often 

unreliable, erroneous, or extraneous.

• Diagnosis. Identifying problem areas or faults based on potentially noisy data. 

Often the first step is to interpret the data which can be incomplete, inexact, or from faulty 

sensors.

• Monitoring. Interpreting signals continuously, or intermittently, and warning 

when intervention is required.

• Control. Adjusting or regulating a system based on signals monitored.

• Prediction. Inferring likely consequences from given situations.

• Repair. Acting to rectify faults in a system. The first step is to diagnose.

• Instruction. Identifying deficiencies in a student’s problem solving knowledge 

and recommending actions.

FORMATION. Most engineering problems are formation problems, complex 

procedures where the solution is not already in the knowledge base. The solution space is 

generally very large, and methods must be implemented to prune the number of likely
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outcomes from the solution space. Typical tasks are:

° Planning. Creating a program of actions to achieve a goal, subject to specified 

constraints. Excessive use of resources should be avoided.

• Design. Creating objects that satisfy certain specifications. In large design 

problems, the task is usually divided into a number of subtasks that interact with one 

another. Priorities must be established for resolving conflicting goals.

In formation problems, since the exact solution does not necessarily exist in the 

knowledge base, it must be generated by the inference mechanism using the knowledge 

base. A  generate and test method is often used; aE possible solutions are generated, then 

tested, until a solution is found that satisfies the goal condition. Another method, problem 

reduction is also used for formation problems. Problem reduction involves factoring the 

problem into subproblems (subsystems). Formation problems usually use a hierarchical 

approach to develop a plan at successive levels of abstraction. They frequently involve 

backtracking, when no solution exists along the current path, and constraint handling for 

interaction between the subsystems.

KNOWLEDGE ACQUISITION

The process of extracting knowledge from an expert (or source of expertise) and 

transferring it to an expert system, knowledge acquisition, is an important and difficult 

problem. Knowledge acquisition plays a major role in designing an expert system, and is 

viewed by many authors as a bottleneck in the construction of expert systems.

Buchanan (1983,140 -149) has described the following elements as part of the 

knowledge acquisition process:

• Identification of experts, resources, and knowledge engineers

• Conceptualization of tasks and subtasks, and the techniques used by the expert

• Formalization of concepts by mapping them into representation schemes

• Implementation by encoding knowledge, and iteratively acquiring and testing the 

system’s expertise

• Testing and refinement of the prototype, by an expert; exhaustive testing is 

infeasible, due to the combinatorial explosion of the possible solution states.
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Eliciting knowledge from the expert is a time consuming process. Often an expert 

can tell you what he does, but not how  he knows to do it. Encouraging the expert to 

describe his expertise in the most natural way may help elicit knowledge about the 

procedures he uses in his problem solving. The expert tends to keep the whole problem in 

mind, and can find it hard to focus on one sub-issue when several, related sub-issues are 

also present Once a prototype system is implemented, it becomes difficult for the expert to 

distinguish between fundamental problems in the knowledge base and superficial problems 

in how the program presents information to the user. Several methods have been used in 

knowledge acquisition (Hart 1985,456 - 460).

• Interview. The knowledge engineering explores, with the expert, the kinds of 

data, knowledge, and procedures needed to solve specific problems. This process is 

difficult to structure, and since the expert is often not explicitly aware of the methods he 

uses, he often loses interest in the process.

• Protocol analysis. An expert examines documented cases and talks about them. 

This is more structured, thus reducing some of the problems with interviews. A variation 

of this method involves watching the expert solve real problems on the job.

• Induction. A set of specific examples, a training set, is used to automate the 

induction of rules or patterns, i.e., machine learning.

• Repertory grid technique. An expert produces examples and two valued attributes 

for the examples. The grid is a cross-reference between the examples and the attributes. 

This technique helps the expert structure and classify the knowledge.

In each of these techniques, the knowledge engineer often needs to guide the expert in 

formulating the data and procedures that will produce a relevant, and useful, knowledge 

base.

To implement the expert’s knowledge in the expert system, the knowledge engineer 

will need to choose an appropriate representation and inference strategy. He must be 

familiar with the various knowledge representation schemes and inference strategies in 

order to choose the schemes that best fit the problem.
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CHOOSING A TOOL

A multitude of expert system building tools are available (van Koppen 1988; 

Waterman 1986; Harmon and King 1985; Hayes-Roth, Waterman, and Lenat 1983). Some 

tools, widely used for expert system development, are summarized in Figures 3.1 and 3.2.
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Figure 3.1. Programming Environments
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Programming environments give the most flexibility in developing systems, but are 

considerably more difficult to learn and to implement than expert system shells. An 

important consideration in choosing an implementation tool, is the knowledge 

representation and inferencing schemes selected by the knowledge engineer. Many of the 

newer expert system shells offer a variety of schemes, and are therefore suitable for 

developing a variety of expert systems applications. Derivation problems are best suited to 

rule-based systems, formation problems to object-oriented systems.

In general, the developer should select the highest level programming environment 

possible, typically a hybrid tool. A tool with interfaces to existing algorithmic code may be 

required for some applications. An expert system shell with graphics capabilities will 

enhance the development of interactive graphical applications.

DEVELOPING A PROTOTYPE

A prototype system can test the adequacy of the chosen programming tool, the 

representation of the expert’s knowledge, and the strategy for inferences. The prototype 

should focus on a small set of hypotheses, combine the smallest number of findings 

necessary to discriminate among the solutions, and include findings that significantly 

improve the quality of decisions (Weiss and Kulikowski 1984,106). The system will be 

developed iteratively, with increasingly sharper and deeper understanding of the expertise.

A large expert system project should be managed as any other large software 

project, incorporating modularity, top-down design, documentation, and accountability.

An obvious observation is that object-oriented systems are more modular and therefore 

more conducive to top-down design.

Most expert system implementations for engineering applications integrate expert 

system techniques with procedural code, supported by hybrid tools. Links to appropriate 

software for computations, database management, spreadsheet analysis, and other existing 

software tools, enhance the functionality of the system, and reduce the development time.

The user interfaces should receive particular attention, and will require about half 

of the development time. Features that are available in some tools are windows, gauges, 

menus, displays, mouse sensitive screen regions, and natural language interfaces.
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Different user interfaces for various levels of users, from novice to expert, will augment the 

usability and acceptability of the system.

An important aspect in developing an expert system is involvement of both the 

expert and the user. The expert needs to be willing, and the user must be involved in the 

development The system must be reviewed with both the expert and the user, they also 

must be involved in testing and refining the system.

Maintenance of the system will be required. When an expert system stops 

evolving, the effectiveness of the system begins to decline, since the nature of most 

problems solved with expert systems changes over time.

VALIDATING THE SYSTEM

Validating an expert system typically involves running test cases and comparing the 

results against known results or expert opinions. The expert(s) contributing to the expert 

system knowledge base is a valuable resource for evaluating the tool. However, avoid 

validating the system against the expert, or test cases, that assisted in the development of 

the system since this may not identify problems or inconsistencies that were not considered 

during the development of the system.

Validation methods can be either qualitative or quantitative. Some qualitative 

methods are: predictive validation, field tests, subsystem validation, sensitivity analysis, 

visual interaction; quantitative methods include statistical tests and consistency measures. 

(O’Keefe, Balci, and Smith 1987, 85 - 88) The acceptable performance determined by 

either method will not be a binary value (yes or no), but will be a range of values. 

SUM M ARY

The key to successfully implementing an expert system is the knowledge engineer. 

The knowledge engineer must be able to work with the expert to formalize the knowledge 

and inference strategies. The knowledge engineer must also be familiar with the available 

tools in order to effectively develop the representation schemes for the knowledge and to 

implement the system. In order to implement a viable expert system, the knowledge 

engineer must be able to obtain the support of the expert and the potential users.
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CHAPTER 4  

EXPERT SYSTEMS IN ENGINEERING

Problem solving tasks in engineering mainly involve planning and design (or 

formation type problems). Early expert systems were applied to derivation problems, 

problems such as medical diagnosis and molecular structure interpretation. Many systems 

have been developed to monitor and control manufacturing and chemical processing, which 

are also derivation problems (Maus and Keyes 1991). However, few systems exist for 

design applications.

Two characteristics separate engineering problem solving from tasks addressed by 

the early systems. The first is the diversity of the knowledge, a combination of engineering 

models and scientific principles, information about materials and specifications, and 

heuristic information. A variety of specialized knowledge representations is needed to 

depict this diverse knowledge. The second characteristic is the complexity of engineering 

systems, generally physical systems with many interconnected components.

PROBLEM SOLVING

Algorithmic solutions are applied to well-structured problems. Newell (1969,365) 

defines a well-structured problem as one that satisfies the criteria:

• It can be described in terms of numerical variables, scalar and vector quantities.
• The goals to be attained can be specified in terms of a well-defined objective 

function.
• There exist computational routines (algorithms) that permit the solution to be 

found and stated in actual numerical terms.

On the other hand, knowledge-based expert systems are well suited to ill-structured 

problems in a complex domain. Noble (1979,27) suggests that ill-structured problems can 

be characterized by some or all of the following: complex, dynamic, ill-defined, political, 

interactive, uncontrollable, and most importantly, unpredictable.

29
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Many engineering problems are not amenable to algorithmic solutions; they rely on 

judgment and experience. The problem-solving process involves skillful manipulation of 

large quantities of knowledge, assumptions, and hypotheses, in a trial and error manner, 

revising until an acceptable solution is found. These problems are amenable to expert 

system solutions.

DESIGN METHODOLOGY

Design is a creative process, involving multiple solutions. It is empirical, intuitive, 

approximate, and most importantly, requires expertise. It also involves quantitative 

analysis. Several steps in the design process have been identified (Hubka 1982,62; Pahl 

and Beitz 1984,38 - 40; Ullman 1992,89 - 96) and are illustrated in Figure 4.1.

SPECIFICATIONS

CONCEPTUAL DESIGN

GENERATE EVALUATE

PRODUCT DESIGN

EVALUATEGENERATE

iteration

PRODUCTION

Figure 4.1. Design Process: An Iterative Model
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SPECIFICATIONS. The first step in design is to transform the problem into a 

well-formed set of design specifications, which are the primary communication tool and 

control mechanisms for engineering design. The initial customer requirements are often ill- 

defined, imprecise, incomplete, and may even contain conflicting information. They need 

to be molded into a precise, and quantitative, set of design specifications for an ideal 

description. This description will be used to compare all potential, or conceptual, designs 

in order to discard inappropriate solutions.

CONCEPTUAL DESIGN. In the conceptual design phase, the product is viewed 

as a whole, from a functional approach. The individual assemblies and components are 

treated as black boxes, and are described by their functional capabilities — or what the 

product does, not by their structural composition -- or how the components work. The 

conceptual design should identify manageable subsystems to be designed by further 

refinements.

Creativity is important in generating conceptual designs. Equally important, is the 

generation of many potential designs. Often a designer will focus on an initial solution, 

with the high probability that better solutions to the design problem are neglected. The 

designer must avoid this tendency, as well as the tendency to dismiss unlikely solutions 

before they have been developed to an extent that can by judged against the specification for 

the ideal design. The creative process is based on synthesizing personal experience or the 

experience of outside experts.

Several strategies which can be implemented as CAE tools are used to generate 

conceptual designs. One strategy involves redesigning or modifying an existing product to 

meet the new specifications. Another strategy uses existing components and develops new 

configurations to satisfy the design requirements. Parametric designs are often used by 

generating conceptual designs using alternate values for the design variables (or 

parameters).

The conceptual designs are evaluated by comparing the designs to the specifications 

developed during the first phase of the design process, and then judging the feasibility of 

each design. This is often accomplished by a rough analysis or by using empirical rules.
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The designs should also be assessed for their technological readiness. Generating and 

evaluating conceptual designs is an iterative process, and should be encouraged at this 

phase. It is much less expensive to iterate a conceptual design than a product design.

PRODUCT DESIGN. The conceptual design is refined in the product design phase 

to a fully developed, optimal design. Each component is detailed; and choices for 

materials, processes and vendors are finalized. A  recent trend is to design the product 

concurrently with the manufacturing process, by a team composed of the designers and 

manufacturing and materials specialists.

As the product designs are generated, they are evaluated for both performance and 

cost, and for manufacturability (including the ease of assembly) and maintainability. 

Experimental and analytical models are used to judge the performance of the design; many 

automated procedures exist to assist in evaluating the design. Analysis procedures produce 

only quantitative information about the design; they do not make judgments about what the 

information means or determine whether the design is good, or how to make it better.

Evaluating the product design may expose limitations in the design that can be 

eliminated by modifying the design. Iteratively generating and evaluating product designs 

will result in a better product Sometimes it may be necessary to return to the conceptual 

design phase, and generate new possibilities.

The result of the product design is a set of design records: detail and assembly 

drawings, bill of materials, assembly information, quality control and quality assurance, 

and instructions for installation, operation, maintenance, and retirement These records are 

used to convey the product to manufacturing and to eventually communicate with the 

customer.

The design process progresses from a general overview of a problem solution to 

increasingly detailed components, or subtasks, o f the problem solution. Design is a highly 

iterative process of interconnected steps, iterating between synthesis of problem solutions 

and analysis of those solutions. Specifications may need to be relaxed to accomplish the 

design; conceptual design models are modified and reevaluated until an optimum design is 

found. New information is often incorporated after the design process has begun, or new
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insights are gained that impact the design. The problem is decomposed into subproblems, 

then redecomposed; specified and respecified; designed and redesigned.

Hoeltzel and Chieng (1989,48 - 50) postulate the following systematic design 

methodology:

• Design procedures propagate gradually from a qualitative domain to a quantitative 

domain, from synthesis to analysis, estimation to evaluation. Thus, design 

procedures are generally hierarchical.

• The design process can be separated into a generic portion and a domain-specific 

portion, and may be further subdivided into a creative design portion and a routine 

design portion, depending on the coupling of the design variables.

• An abstract design optimization process, based on a hierarchical data structure and 

monotonic reasoning, is guaranteed to converge during the search for the optimum 

solution.

Mechanical design involves additional aspects, not necessarily found in other 

engineering design processes: material selection, sensitivity to manufacturing concerns and 

processes, complex three-dimensional geometries, and non-modularity.

EXPERT SYSTEMS IN THE DESIGN DOMAIN

Knowledge-based expert systems for mechanical engineering design have been 

implemented using several approaches. J. R. Dixon and the Mechanical Design 

Automation Laboratory at the University of Massachusetts use a design-evaluate-redesign 

approach (Dixon, Simmons, and Cohen 1984). A second approach, used by David Brown 

at Worcester Polytechnic Institute and B. Chandrasekaran at The Ohio State University, 

involves design refinement with plan selection and redesign (1984). Another approach, 

transformation, is proposed by A. S. Kott of the Carnegie Group Inc. and J. H. May at the 

University of Pittsburgh (1989).

DESIGN - EVALUATE - REDESIGN. This architecture is applied to the design of 

component parts and small systems where the initial design and each subsequent redesign 

iteration is a complete design. An initial design is evaluated or analyzed to determine its 

expected performance in terms of performance parameters that may include cost, function, 

and manufacturability issues. A decision is made as to the design’s acceptability. If the
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design is acceptable, the task is complete. If not, the design is redesigned and reevaluated, 

iteratively. Redesign can ultimately fail; then the process returns to the initial step to relax 

the requirements. In redesign the analysis results and the reasons for unacceptability are 

used heuristically to guide the changes.

The four distinct functions in this methodology — initial design, evaluation, 

acceptability determination, and redesign -- are each represented by a separate knowledge 

source. Two other functions — control and the user interface — axe also represented in 

separate knowledge sources.

DESIGN REFINEMENT WITH PLAN SELECTION / REDESIGN. Brown and 

Chandrasekaran separate design into three classes of increasing difficulty and complexity:

• routine design with known design plans

• known components but design plans unavailable

• unknown components.

Routine design is accomplished by decomposing the known design plan. Complexity is 

still a factor in routine design and is related to the number of components and sub­

components and the variety of combinations of the design goals. The knowledge sources 

are identified since the components and subcomponents are known.

The knowledge forms into clusters; it is not a large unstructured collection of rules, 

all having equal potential for use. The knowledge is a hierarchical organization of:

• conceptual specialists, each with different expertise and a set of plans

• plans, sequence of calls to tasks

• tasks, series of steps

• steps, which make the design decisions.

The system is divided into four stages: requirements validation; rough-design for 

determining the most important values (e.g., material), thus pruning the design space; 

design; and redesign by relaxing the requirements with user interaction. Each stage 

involves plan selection and design refinement

The interaction between the subsystems is weak, but it is not negligible. Thus 

routine design is almost decomposable, but still requires communication between the
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subsystems. Communication between the specialists is through messages across the 

hierarchical connections.

Failure handling, when a design doesn’t work, is a modified form of dependency- 

directed backtracking controlled by suggestions and failure-handling advice. The user can 

be a knowledge source for failure handling, as well as for other stages of the program.

TRANSFORMATION. In the transformational process, each step starts with a 

design state and produces another design state of the same degree o f completeness. A  

portion of the design structure is replaced with a different substructure. This process may 

operate on more than one component at a time and is used effectively when the design 

cannot be easily decomposed. An appropriate application is a design that has tightly 

coupled subcomponents.

IMPLEMENTATION ISSUES. Expert systems developed for design applications 

must address the design methodology. They require the integration of large amounts of 

intuitive knowledge, judgment, and experience, as well as quantitative tools. They involve 

cooperative problem-solving with multiple experts, which can be a set of logically or 

physically disjoint knowledge sources communicating through a blackboard. Complex 

design is characterized by a hierarchical model; the design proceeds from a simple, 

approximate model to increasing complexity, realism, and reliability. The hierarchy of 

abstraction is from global to detailed design. The consequences o f design decisions cannot 

be predicted until the design has progressed considerably. Redesign is inevitable, thus 

scheduling of subproblems for redesign is a concern.

Spatial relationships are necessary parameters for the designer and are not easily 

approximated symbolically or qualitatively. Hybrid systems can effectively bridge between 

the symbolic and numerical domains. Other implementation considerations are associated 

with the user interface. The interface should differentiate between novice and expert users 

and provide an effective means of communication with the user. (Allen et al. 1987,98) 

EXPERT SYSTEM IMPLEMENTATIONS: DESIGN APPLICATIONS

A discussion of expert systems used in selected design tasks illustrates the current 

state of knowledge-based tools in engineering design applications.
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STRUCTURES.

SACON is a consultant for structural engineers on the use of the finite element 

analysis program MARC. SACON identifies the analysis class of the problem and 

recommends specific features of the MARC program to activate. SACON is a backward 

chaining, rule-based system implemented in EMYCIN. (Bennett and Engelmore 1979) 

HI-RISE addresses the preliminary structural design of buildings. HI-RISE 

configures and evaluates several alternative structural systems for a given three-dimensional 

grid. A combination of frame-based and rule-based reasoning is implemented in PSRL, a 

language developed at Camegie-Mellon University. Rules in PSRL are expressed in an 

extension of the OPS5 language syntax; a LISP-based declarative formalism is used to 

represent the structured objects. HI-RISE is an early application exploring the use of 

expert systems for design problems. (Maher and Fenves 1984)

Composite Design Assistant coordinates access to a database manager for material 

properties and to analysis codes for design of sandwich panels. CDA is written in 

PROLOG, while the interfaces to the databases and analysis codes are written in 

FORTRAN. (Zumsteg, Pecora, and Pecora 1985)

BEADS, a prototype Building Envelope Analysis and Design System, assists the 

designer in selecting materials and constructional systems. A knowledge base containing 

information on performance requirements and constraints from building codes is interfaced 

with a database of material properties. BEADS is implemented as a framed-based system 

using Knowledge Craft. (Fazio, Bedard, and Gowri 1989)

FRAMEX is an integrated system for simulating the design process o f rectangular 

multistory steel buildings, using numerical processing, symbolic processing, and database 

management FRAMEX is implemented as a rule-based system, using Personal Consultant 

Plus, with graphical user interfaces and interfaces to analysis software written in Turbo 

Pascal. (Adeli and Chen 1989)

IBDE, Integrated Building Design Environment is a prototype environment of 

processes and information flows for the vertical integration of architectural design, 

structural design and analysis, and construction planning. The processes are knowledge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

37

based expert systems using declarative or rule-based knowledge representations: 

architectural planner ARCHPLAN, space planner for service core CORE, structural system 

configurer STRYPES, structural layout and approximate analysis system STANLAY 

component designer SPEX, foundation designer FOOTER, and construction planner 

CONSTRUCTION PLANEX. A blackboard architecture is used to coordinate 

communication between the processes, and the global information is organized in an object 

oriented programming language. (Fenves et al. 1990)

EXPERT-SEISD is an object based rule system for the preliminary design of beam 

and plate components. The system consists of a design module and a knowledge 

acquisition module for updating and/or expansion of the knowledge base and database. 

EXPERT-SEISD is implemented in GCLISP, a PC version of Common LISP developed by 

Gold Hill Computers, Inc. (Umaratiya and Joshi 1992)

COKE, Construction Knowledge Expert, provides feedback on the constructability 

of the structural design of a reinforced concrete building structure. COKE reasons about 

the geometrical and topological model of a designed facility and provides construction input 

for the structure. COKE incorporates the data from AUTOCAD with Kappa PC to build a 

symbolic model of the project’s structure. The system links the requirements of 

construction methods with structural design decisions to determine the constructability of a 

design. (Fischer 1993)

STANDARDS.

SPECON aids the structural engineer in checking structural steel elements for 

conformance with the AISC Steel Design Specification. The essential difference between 

SPECON and other expert systems is the flexibility provided to the user to alter numerical 

values of design parameters until the hypothesis is satisfied. An explanation module 

informs the user how certain deductions were made or why a particular question was 

asked. SPECON is a backward chaining production system, implemented in LISP and 

OPS5. (Sriram, Maher, and Fenves 1985,5-6)

SICAD is a rule-based approach for checking designed components for 

conformance with applicable standards. SICAD integrates conformance checking with
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procedural programs for structural analysis, database management, standards, and 

synthesis components. SICAD, a hybrid system incorporating a blackboard architecture, is 

implemented in POLO, a FORTRAN based language translation facility and comprehensive 

engineering database manager with an associated analysis package. (Lopez, Elam, and 

Reed 1989)

HyperLRFD is a prototype system developed to evaluate the feasibility and 

practicality of a unified Object-Logic model for the representation of design codes and the 

processing of design standards. HyperLRFD incorporates parts of the AISC Load and 

Resistance Factor Design (LRFD) specification and performs conformance checking and 

component design. The organizational aspects of the design standards are represented with 

an object-oriented paradigm while the reasoning mechanisms for the design are 

implemented in logic programming. HyperLRFD is implemented in PROLOG++ (object- 

oriented extension o f PROLOG) and uses HyperCard (Hypertext software for Macintosh 

computers) to implement the user interface; HyperLRFD interfaces to an Oracle relational 

database system and Excel spreadsheet software. (Yabuki and Law 1993).

MECHANICAL.

VEXPERT designs standard V-belt drives. VEXPERT was implemented to 

demonstrate the design-evaluate-redesign architecture. A design algorithm is used to obtain 

an initial design from problem specifications. Utility-decision algorithms are used for 

analysis and acceptability. VEXPERT is written in LISP, uses OPS5 production rules, and 

a blackboard implementation scheme. (Dixon and Simmons 1984)

XENIF designs aluminum extruded rectangular heat fin arrays for natural 

convection heat transfer. XENIF was implemented to demonstrate the design-evaluate- 

redesign architecture, based on dependencies, or relationships, between design goals and 

design variables. XENIF is written in DELPHI, a General Electric proprietary expert 

system language, and uses rules written in LISP. It uses FORTRAN utilities for analysis. 

(Kulkami etal. 1985)

AIR-CYL is an application of a general purpose design expert system, designing air 

cylinders for a given set of requirements. It was implemented as a demonstration of a
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hierarchically structured system with plan selection for routine design. AIR-CYL was 

developed using the task-level DSPL language, Design Specialists and Plans Language, 

which is based on a LISP dialect. (Brown and Chandrasekaran 1986)

PRIDE designs paper-handling systems inside copiers and duplicators, organizing 

the knowledge as design plans. The plans decompose the problem into simpler parts. A 

problem solver executes these plans and uses dependency-directed backtracking with an 

advice mechanism to handle constraint failures. (Mittal, Dym, and Moijaria 1986)

DPMED selects design parameters for mechanical primitives such as gear-pairs, v- 

belts, bearings and shafts. DPMED incorporates rules for selecting materials and critical 

design criteria, and a database of standard values of design parameters. DPMED uses 

Refinement + Constraint Propagation + Parameter Selection. As each sub-module is 

designed, constraints are propagated to the other sub-modules to guide their design. 

DPMED was implemented in KEE, an object oriented environment (Ramachandran, 

Shah, and Langrana 1988)

A prototype expert system for the gating design of an investment casting process 

incorporates a “design-with-features” approach. The prototype uses an object oriented 

structure, implemented in KEE, to manipulate features for geometric reasoning and 

interfaces to the CAEDS solid modeler. Communication between the systems is through 

Common LISP. (Chung et al. 1988)

XCUT is a feature language which generates process plans for the production of 

machines parts. XCUT couples rule-based and object-oriented programming techniques 

for automatic classification of machine features. (Hummel 1989)

MEFDES, Modular Element Fixture Design Expert System, interfaces a 3-D CAD 

system (ME30) with a feature recognizer, which analyzes the part geometry and extracts 

machining features, to determine fixture setups for prismatic parts. The rule /  frame-based 

system is implemented with Nexpert Object, an expert system shell, (kumar, Nee, and 

Prombanpong 1992)

An integrated system combining conventional expert system methodology with 

operations research decision-analysis techniques has been applied to material selection in
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automobile bumpers by Thurston (1993). The heuristic rules are separated into two 

categories: subjective rules, which embed assumptions about balancing conflicting design 

objectives and user preferences, and objective rules, comprised of factual information and 

which do not typically vary between designers. The objective rule base is used to identify a 

set of design alternatives that satisfy minimum performance requirements by eliminating 

those alternatives not falling within specified design parameters and configuration 

constraints. A user manipulated utility function, incorporating multiattribute utility 

analysis, then evaluates and ranks each alternative. The knowledge base was constructed 

in OPS5, and the utility function expert system module was written in Common LISP.

A system for parametric design and analysis of a family of parts with a specific 

focus on gas turbine nozzles has been developed with Smart Model, a knowledge-based 

engineering system from ICAD, and integrated with software utilities developed by General 

Electric. These utilities include a geometric modeling utility, TAGUS; an automatic 2-D 

mesh generator, QUADTREE; and a lofting type mesh generator for extruded components, 

EXTREME. The Smart Model knowledge-based system uses an object-oriented 

framework to represent the design and manufacturing information as part of the complete 

product definition of parts, assemblies, and systems. (Saxena and Irani 1993)

ALPR.0 incorporates design compatibility analysis, which ranks manufacturing 

processes based on feasibility for the basic geometry, material, and production 

requirements of components, with normalized cost analysis. The prototype addresses 

aluminum processes: extrusion, sheet forming, forging, die casting, permanent mold 

casting, sand casting; coupled with the secondary processes of bending and machining. An 

object oriented representation is used for the capability data; the program uses HyperCard 

as a front-end, PROLOG for logic-based analysis, and Excel for cost calculations. (Yu et 

al. 1993)

INJECTION MOLDING.

IMPARD evaluates designs of injection molded parts based on manufacturability 

criteria such as wall thickness, comer radii, boss and hole dimensions, melt flow length, 

taper angles, and draft angles. IMPARD interfaces to the GeoMod database, a solid
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modeler developed by SDRC. Primitive features are input by the designer and used for 

visual displays and design evaluations (Vaghul et al. 1985)

A  prototype knowledge-based synthesis system for injection molding is presented 

by Kim and Suh (1986). It combines a rule-based system with a cavity filling simulation 

program. Theoretical models predict the moldability of the design and the mechanical 

performance of the molded part The user interacts with the design loop to synthesize 

designs in terms of gate location and molding conditions. The design is evaluated for 

moldability and strength. The prototype was implemented using EXPERT.

GERES is an expert system for selecting injection-molded resins based on pre- 

design application information. GERES requests nontechnical, symbolic design attributes, 

prioritized by the user, to guide the material search. The program selects technically 

feasible resins and ranks the selections by cost; the program also “relaxes” non-critical 

needs to find economically feasible alternatives. GERES is implemented in Delphi, a GE 

proprietary product, and uses rules, object-attributes-value triples, and LISP procedures. 

(Nielsen, Dixon, and Simmons 1986)

AMDS, Automated Mold Design System, integrates the Moldflow analysis 

program, features database, and iterative redesign to automate the design of injection 

molds. The features database represents the part and the feed system. The quality of the 

design is based on performance parameters. (Irani, Kim, and Dixon 1989)

IMCE, Injection Molding Cooling Expert, is a hybrid expert system for the design 

of the cooling system for injection molding. IMCE uses the heuristic-depth-first searching 

algorithm for redesign. An interactive graphics program is used to create/edit the two- 

dimensional geometric model, and the numerical model. The cooling process for the 

numerical model is analyzed. Databases contain material properties, cooling rules, and data 

for the analysis programs. The user can interact with the redesign stage to modify the 

design variables. IMCE was developed in Common LISP under the expert system shell, 

KEE. (Lee and Kwon 1989)

Dennis Pearce developed an expert system to estimate the cost and configuration of 

injection molds for plastic parts. (1989)
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Ishii, Homberger, and Liou (1989) have developed an expert system prototype to 

evaluate a candidate design using design compatibility analysis among user requirements, 

process constraints, and the part design. Suggestions for improving the design are 

presented both graphically and in text format The prototype uses DAISIE (see the next 

section) as a platform for the compatibility analysis and is implemented in PROLOG with a 

HyperCard user interface.

GENERAL PURPOSE.

GEPSE is a General Engineering Problem Solving Environment GEPSE is an 

object network language that simplifies the construction of object and rule bases. Other 

features are function libraries, user interface packages, and a facility for meta-level control. 

GEPSE is a forward chaining system, and is implemented in C. (Chehayeb et al. 1985) 

KADBASE is a knowledge-aided database management system prototype. It is a 

flexible interface for multiple databases and knowledge-based systems to communicate as 

independent, self-descriptive components within a loosely coupled distributed system. 

KADBASE provides the mechanism to develop a distributed, integrated CAD system; it 

uses a frame representation scheme and forward and backward chaining inferencing in a 

blackboard model. KADBASE is implemented in Franz LISP. (Rehak and Howard 1985) 

DOMINIC I performs design by iterative redesign in a domain independent 

environment, using a hill climbing algorithm. The class of redesign problems for 

DOMINIC I are those that are intellectually manageable and solvable without sub-division 

into smaller parts. DOMINIC I contains a knowledge acquisition module and is 

implemented in Common LISP. (Dixon et al. 1986)

DAISIE, Designer’s Aid for Simultaneous Engineering, uses design compatibility 

analysis to evaluate a conceptual mechanical design for compatibility with various life-cycle 

issues. The knowledge bases represent issues such as functionality, esthetics, and 

manufacturability, important in mechanical design. The system evaluates the design while 

the designer makes tradeoffs and the final decisions based on suggestions from the system. 

DAISIE is a shell for mechanical design and is implemented in an object oriented 

environment using PROLOG and HyperCard for the user interface. (Adler and Ishii 1989)
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IDS, Intelligent Design System, is an integrated design for manufacture 

environment that advises the user on the feasibility of a ”design-with-features” approach. 

IDS is based on a CAD system and is integrated with an expert system and a database 

management system which uses three distinct classifications of information: object- 

oriented CAD data, a design catalog, and a knowledge base of rules and heuristics. IDS is 

implemented in the C programming language and interfaces to a CLIPS expert system shell 

and an Oracle database management system. The interfaces are written in the C 

programming language. (Miller and Colton 1992)

IES, Integrated Engineering Shell, is a framed-based expert system shell 

incorporating a blackboard architecture and a database management system. IES provides 

backward chaining, forward chaining, and hybrid chaining inferencing strategies. IES is 

implemented in the C programming language. (Sakthivel and Kalyanaraman 1993)

ACL, Agent Communication Language, is an agent-based framework for the 

development of integrated facility engineering environments. The design agents, various 

software programs for design and planning systems, communicate design information to 

facilitators in a federation architecture having no central database. Messages, based on 

first-order predicate logic, are used to communicate information. (Khedro, Genesereth, 

and Teicholz 1993)

KASE, Knowledge Assisted Software Engineering, is a set of tools for software 

analysts and designers at the architecture level. KASE captures the various knowledge 

needed for design and applies the knowledge to aid knowledge engineers in automating 

design activities. KASE is implemented in a blackboard architecture for a class of tracking 

problems, in which the task is to identify and track objects in space based on signal data. 

(Nii 1994)

RESEARCH AREAS

The current expert system paradigm does not suffice for real world engineering 

problems. The early expert system implementations for derivation problems are not 

directly extensible to formation problems. Several systems have been developed for design 

problems; however, these implementations have also exposed limitations in the current
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methodologies. Some specific areas that need further research are (Lu 1986, 14 - 18):

° knowledge acquisition

• inductive reasoning

• limited, narrow problem domains

• integrating heuristic and deterministic knowledge (engineering models, physical 

principles, and governing equations)

• interactive user interfaces

• use of system shells for domain-specific, task-independent applications (design 

shell, diagnosis shell, planning shell, etc.)

This research focuses on the last three areas.

SUMMARY

Early expert systems addressed derivation problems, i.e., they look for a path that 

leads to a specified goal, which exists in the knowledge base. The expert systems 

discussed in the previous section differ from these early systems since they address 

engineering design problems, problems that require a diversity of knowledge bases for 

complex engineering systems, where the solution is not already in the knowledge base. 

However, most o f these expert systems are either implemented in programming languages, 

requiring many man-months of development effort, or in programming environments 

requiring many months of training before a developer gains the requisite knowledge to use 

the tool effectively. This research is cognizant of the limitations of these implementations, 

particularly those most closely related, and investigates the use of expert system shells for 

design problems.

Expert systems for engineering design applications require an integration of 

heuristic and deterministic knowledge. They also involve cooperative problem solving 

using multiple experts. Hybrid systems have proven to be valuable tools in implementing 

these engineering systems.
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CHAPTER 5 

PROTOTYPE DEVELOPMENT

The diversity of the knowledge in engineering problem solving and the complexity 

of engineering systems lead to many difficulties in applying expert systems to design 

problems. The knowledge is a combination of heuristic information (design rules and 

guidelines), and deterministic knowledge (engineering models, scientific principles, 

governing equations, information about materials and specifications, and analysis data from 

existing algorithms). The knowledge is provided by multiple sources, requiring a variety 

of specialized knowledge representations, which need to be integrated for fully functioning 

systems.

Tools currently exist that are appropriate for developing expert systems for complex 

tasks such as engineering design. Expert system shells, in particular, offer rich 

development environments with interfaces to programming languages, access to databases, 

and graphical capabilities to assist in developing user interfaces. In order to test the 

capabilities of various KBES shells, a prototype system should be constructed to categorize 

the knowledge used in design processes and develop representations for that knowledge. 

The prototype should integrate the knowledge sources with existing databases and analysis 

software and demonstrate graphical user interfaces for explanation and knowledge 

acquisition facilities, as well as interactive capabilities for user participation in the design 

process.

Designing an injection molded plastic part is a representative engineering design 

problem; a subproblem, the design of a cantilever snap joint to join two components, was 

chosen for a detailed prototype implementation. The knowledge structures required for a 

snap joint are typical of the structures in a general engineering design problem; the 

prototype involves a materials database, design specifications, equations for analyzing the 

design, and heuristics or rules of thumb.

45
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CHOOSING AN EXPERT SYSTEM BUILDING TOOL

A  range of tools with varying levels of support for knowledge acquisition, 

explanation facilities, (interactive) graphics, uncertainty management, and other features 

influencing the ease of use of the expert system are available to the expert system 

developer. The expert systems that have been developed for design problems have 

generally been implemented using programming languages or programming environments. 

These tools are relatively difficult to use and are practically useless to the typical engineer 

with limited programming skills. Consequently, the use of these tools is limited to 

knowledge engineers having a thorough understanding of knowledge representation 

schemes and inference mechanisms.

Expert system shells, at the high end of the available tools, facilitate rapid 

development of expert systems because they incorporate specific knowledge representation 

schemes, inference mechanisms, and control. Since they often provide interfaces to 

existing databases and to procedural languages, the developer can interface the expert 

system with solid modeling systems and a multitude of existing analysis software (such as 

finite element modeling). Expert system shells typically offer a graphical interface and an 

explanation facility to encourage user acceptance. Another useful feature to look for in 

expert system shells is a knowledge acquisition facility to help ensure that the expert system 

will continue to evolve and will continue to be used. Most shells provide an interactive 

interface which allows the user to participate in the process, thus serving experts as a 

design aid and novices as a tutor.

Several shells currently exist that are appropriate for developing expert systems for 

complex tasks such as engineering design: Kappa PC, Level5 Object, Concept Modeller, 

G2, and Smart Model.

Kappa PC (IntelliCorp $3500) offers object-oriented capabilities coupled with a 

forward and backward chaining rule system, procedural language programming, dynamic 

presentation graphics, graphical debugging tools, and intelligent links to other applications 

and databases. Kappa PC is based on KEE.

Leve!5 Object (Information Builders Inc. $995) is a hybrid tool which features 

object-oriented capabilities and includes such functions as forward and backward chaining
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inference engines, relational database models, CASE facilities, a graphical toolbox for 

building user interfaces, and graphical debugging tools.

Concept Modeller (Wisdom Systems, $65,000) creates 3-D solid models using 

parametric design capabilities and maintains engineering and manufacturing information, 

such as weight, cost, list price, and material type, in object-oriented databases to provide 

part summaries, bill-of-material reports, and data for finite element analysis programs.

G2 (Gensym Corp., $10,000 - $40,000+) provides an applications environment for 

real time processes using a frame-based knowledge representation system with extensions 

for object-oriented programming. Other features of G2 include interactive windows, 

graphics, and animation; a structured English editor; functions and procedures; and a 

dynamic simulator.

Smart Model (ICAD Inc., $35,000 - $150,000) incorporates rules to extend the 

traditional CAD programs based on interactive geometric modeling systems. These rules 

are used to create a representation of a part that includes product structure and dependence 

on other parts; physical and geometric specifications; material, manufacturing and cost 

constraints; lead times; and manufacturing process plans. The system also includes a full- 

surface modeling system and features for automatically performing and displaying design 

iterations, relating the design knowledge base to manufacturing or processing knowledge 

bases, and transferring data from other CAD systems.

All five tools offer rich development environments with interfaces to programming 

languages, access to databases, and graphical capabilities to assist in developing user 

interfaces. The first two -- Kappa PC and Level5 Object — are PC tools, while the other 

three are workstation tools. Kappa PC is a promising tool, principally because the 

relatively low cost makes the system accessible for most implementations and it offers a 

migration path to the workstation environment. Other important advantages are the object- 

oriented data representation scheme, C programming capabilities, and a large inventory of 

graphical tools. Both forward and backward reasoning are available, using either depth- 

first, breadth-first, or best-first search algorithms. IntelliCorp also offers a similar, but not 

compatible, workstation product — ProKappa. The object portions of the knowledge can 

be ported with minimal effort, but the rales and other interface portions require conversion
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from one syntax to another. Level5 Object, available at an even lower cost, was conceived 

and implemented as a procedure-based tool for database applications. Since the object- 

oriented features are add-ons, and are not an integral part of the shell, Level5 Object is not 

as viable as Kappa PC for object-oriented applications. Kappa PC was evaluated for its 

ease of use in design applications, its capabilities for interfacing to existing software and 

databases, and the tools for developing sophisticated user interfaces.

KAPPA PC DEVELOPERS ENVIRONMENT

Kappa PC offers the developer a rich environment of development tools for 

viewing and modifying elements, building customized displays, and debugging the expert 

system. These tools include graphical representations of the knowledge elements, editors 

and syntax checkers, and functions to read and write ASCII files so the developer can 

access the myriad of software available in DOS and WINDOWS environments.

Among the development tools are the knowledge editors used to define, examine, 

and modify the seven knowledge elements — classes, instances, slots, methods, functions, 

rules, and goals. Kappa PC also provides graphical presentation tools, from the 

Activelmages™ package, to facilitate user interface development and enhance the interface 

features. The tools (Figure 5.1) used to display static information and current information 

stored in single and multiple valued slots include options for text, transcripts or boxed 

information, line drawings, bitmap diagrams, buttons, state boxes, meters, sliders, user-

Images

Figure 5.1. Graphical Presentation Tools
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edited text, and line plots. Another tool, dialog boxes, provide menus to direct user 

interactions, post messages, and forms to enter information into knowledge bases.

An alternative development environment to the knowledge editors is the KAL 

interpreter, a mechanism for testing and executing expressions written in Kappa PC’s 

programming language KAL. The interpreter includes a library of 240 built-in functions to 

create, access, and modify knowledge elements; evaluate math, logical, and string 

expressions; control blocks of expressions; manipulate lists, files, databases, and 

spreadsheets; control knowledge processing; and control the end-user graphical screen 

interface. User defined functions, written in C to create new functionality, control 

processing, and combine individual actions, can be tested in the interpreter and added to the 

knowledge base as functions.

Several tools provide fairly extensive debugging capabilities: an object browser, 

rule relations browser, an inference browser, and rule tracing. The object browser 

provides a graphical view of the hierarchy of classes, instances, and subclasses and allows 

the developer to modify objects and their relationships. Instances and subclasses can be 

hidden to compact the graphical representation. The rule relations browser graphically 

displays the linking relationships between premises and conclusions of rules. The rule 

tracing is a dynamic text description of the inference engine’s progress; it lists the rules that 

the inference engine invokes and the changes to selected slots in the knowledge base due to 

the reasoning. Thus the developer can see how the system generates new conclusions and 

can trace the source of errors in the knowledge base. The inference browser graphically 

depicts the reasoning given by rule tracing.

APPLICATION: CANTILEVER SNAP JOINTS

Snap joints are a simple, economical, and rapid way of joining two different 

components. All snap joints have a protruding part of one component, e.g., hook, stud or 

bead, which is deflected briefly during the joining operation and catches in a depression 

(undercut) in the mating component (Figure 5.2). After the joining operation, the joint 

should return to a stress-free condition. The joint may be separable or inseparable 

depending on the shape of the undercut. The force required to separate the components 

varies greatly according to the design. Two important factors to consider in designing snap
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joints are the mechanical load during the assembly operation and the force required for 

assembly. (Miles 1992)

Cantilevered Lug

Cylindrical Interference

Figure 5.2. Representative Snap Joints

A typical cantilever snap joint is illustrated in Figure 5.3. Recommended design 

procedures are to vary the finger so either the thickness (h) or width (b) tapers from the 

root to the hook. Good results are obtained by reducing the thickness linearly by a factor 

of 1/2 from the root to the hook, or by reducing the width to 1/4 from the root to the hook. 

(Reiff 1991, 60)

return angle, a deflection force, P

width, b
assembly force, W  

undercut, y
thickness, h

length, I
lead angle, a

Figure 5.3. Cantilever Snap Joint Geometry
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Cantilever snap joints are predominantly loaded in bending. From classical beam 

theory, the following equations apply to cantilevered beams with constant, rectangular 

cross sections:

Stress: c  = where M = PI

Deflection: y =
3EI

I = and c =  ̂12 2 .

For a cantilever snap joint (Figure 5.3), the following governing equations are then 

derived from the above equations:

Strain: e =  \  . (—
2 \\2

Deflection Force: P =
6 1

Assembly Force: W = P
(i + tan a  
1 - jitan a

Where:
s  strain in outer fiber at the root

y deflection or undercut

1 length of cantilever arm

h thickness at root

b width at root

Es secant modulus

|i static coefficient of friction

a  angle of inclination (either lead or return)

The calculated strain is compared to the allowable strain. For amorphous materials 

the allowable strain is approximately 70% of the yield strain; the working value for strain 

should be limited to 60% of the allowable strain when the snap joint is to be separated and 

reassembled several times (Miles 1992,12). For example, if the elongation at yield is 

6.5%, then the allowable strain is 0.0455 for a single assembly or 0.0273 for multiple 

assemblies.
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KNOWLEDGE REPRESENTATION

A variety of knowledge is required in designing a cantilever snap joint. The 

cantilever configuration and geometry must be specified, either from geometrical 

constraints of the part or from design specifications and rules. A material must be selected 

for the part, and the appropriate material properties must be available to the designer.

Finally, an analysis, using governing equations and material properties, will determine the 

structural integrity of the snap joint Economic factors are generally considered in a design 

problem but were not included in the prototype since their categorization is similar to that of 

design rules.

OBJECTS.

The knowledge characterizations of an injection molded plastic part can be 

effectively represented in an object-oriented environment In an object-oriented program, 

the data is represented by objects typified by two types of information: information 

describing the objects (classes, subclasses, and instances and their attributes) and 

information specifying what the objects can do (methods). For the prototype design 

problem, classes are established for three different knowledge types: materials, features, 

and the design solution; Figure 5.4 graphically represents the object hierarchy. In Kappa 

PC instances are related to a class by dashed lines; thus, the material class has six 

instances. A solid line indicates a relationship between a class and its subclasses; the snap 

joint class has three subclasses — cantilever, torsional, and annular -- providing future 

extensions for torsional and annular snap joints.

. G /absI
/]lmaqe|

BayblgndFR. J43S 
/ .  CalibreSOO. JO

Root-----------
/  ̂ m a te ria !------

— design

M egnum 36St 
NoryfM SO  

V  P ulse172S 
"• ZytBfJOJ~Diy. 

/nominal wall

i

___ /
^^-projections v ■■ snap_joint----

-depressions ^ r ib s

.-cantilever 
<T torsional 

^ a n n u la r

Figure 5.4. Object Hierarchy
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Methods are attached to the classes or instances and associate behaviors with these 

objects. Generally algorithmic processes, involving few conditions in a predetermined 

series of steps are better suited to implementation as methods than as rules.

A representative sample of the materials and the properties that can be obtained from 

the material database is given in Table 5.1.

Table 5.1. Materials

Name:
Type:

CALIBRE 800-10 
polycarbonate resin

MAGNUM 3661 
ABS resin

PULSE 1725 
polycarbonate 

/  ABS resin
Tensile Stress @ yield (psi): 8,700 5,000 8,400
Comp. Stress @ yield (psi): 14,000 6,900 11,000
Elongation @ yield (%): 6.5 2.3 4.0
Flexural modulus (psi): 360,000 340,000 400,000
Coefficient of Friction:

Plastic to Plastic .55 .75 .65
Plastic to Metal .45 .65 .55

Each class, subclass, or instance is characterized by various slots; for example, 

each material instance has the following properties: tensile stress, allowable compressive 

stress, elongation at yield, flexural modulus, and coefficients of friction for plastic on 

plastic or metal. A listing of the classes, instances, and slot values is available in 

Appendix A.

METHODS.

The knowledge necessary to design a cantilever snap joint is the analysis 

information. In a large design problem, tools such as finite element analysis are required to 

predict the performance of the design. In a relatively small design problem like a cantilever 

snap joint, the beam theory governing equations in the previous section will adequately 

predict the cantilever performance. Methods attached to the design solution class use the 

governing equations to calculate the strain and the assembly forces (listed in Appendix A).
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RULES.

Experience with injection molded parts has resulted in a host of design rules 

applicable to a variety of situations. These rules guide the material selection and the 

specification o f features such as draft angles, surface textures, comer radii, and wall 

thicknesses, all affecting the moldability of a part, its structural stability and appearance, 

manufacturability, and the total production cost. The knowledge for the prototype system 

was acquired from multiple “experts” — design manuals produced by plastics 

manufacturers: Borg-Wamer, Dupont, and Miles; and plastics designers: Beall and 

Palsulich.

A cantilever snap joint is a projection, and therefore rules pertaining to projections 

are appropriate. Some representative rules for projections are:

• length should be less than three times the nominal wall, to avoid molding 
problems

• thickness should be within 50% to 70% of the nominal wall, to avoid sink marks
• ratio of length to thickness should be less than 10, to avoid buckling
• ratio of thickness to the width should be 1:4, slender beam theory assumption
• deflection angle should be less than 10°, slender beam theory assumption

and rules specific to cantilever snap joints are:

• ratio of length to thickness is 5.4:1, determined from a random sampling of latch 
geometries

• undercut should be less than one-half the length
• the lead angle should be between 10° and 35°
• the return angle should be greater than the lead angle

• for a self-locking joint, the return angle should be greater than (90° - tan_1|i)

• if the strain is excessive, reduce the undercut or increase the length

The first seven are implemented as methods (listed in Appendix A), attached to the 

cantilever class, to calculate the geometrical data and assign the values to the slots — length, 

thickness, width, and undercut (The other slot values are specified through the user 

interface.) The remaining logical relationships are implemented as IF-THEN rules. 

Pseudocode examples are given below, and the complete rules are listed in Appendix A.

If ( e  > allowable strain)
then reduce undercut and recalculate design values.
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If(e > allowable strain)
then increase cantilever length and recalculate design values.

If ( W > allowable assembly force)
then increase cantilever length and recalculate design values.

If ( W > allowable assembly force)
then reduce angle and recalculate design values.

If (lead angle <10° or >35°)
then change angle and recalculate design values.

If ( return angle < lead angle)
then change return angle and recalculate design values.

If (joint self-locking & return angle < 90° - tan-1 p.) 
then increase return angle.

If (joint not self-locking & return angle > 90° - tan’1 p.) 
then decrease return angle.

USER INTERFACE

In Kappa PC, the user interacts with the expert system application through the 

SESSION window (illustrated in Figures 5.5 and 5.6). The user selects an injection 

molding feature (Figure 5.5) and then chooses options to initialize or perform the design by 

using buttons.

Nominal Wall

Projections

Depressions

Snap Joints

Ribs

Cantilever

Torsional

Annular

Figure 5.5 Feature Selection

In Figure 5.6 the buttons are located to the right of the diagram and allow the user 

to specify the initial design configuration, change the resulting geometry, select the 

material, and perform the design operation. A small number of functions were written to 

control the user interface and are listed in Appendix A.
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Snap Joint Demonstration

<S*f l«ct lo t f o r a ,  P-
•tMdeiesi* k /  b L

Configuration

Change Geometry

Select Material

Design

Reset

Stop

Snap Joint Configuration Material Properties Design Specifications

Figure 5.6 Design Interface

To initialize the design geometry, the user clicks the CONFIGURATION button 

| which executes a method attached to the cantilever class. This method asks the user toI
| specify the initial design configuration (Figure 5.7) and applies design heuristics to
i

generate an initial geometry for the cantilever. For some entries, the user is provided a list 

of appropriate responses, which is obtained by clicking the arrow on the right hand side of 

the menu (e.g., “Select component types” prompt). Kappa PC also checks the values 

entered by the user and limits the entries to ranges specified by the developer.

!
ia
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Initial design configuration

Satectlypeofgiomuby constant

S elect number o f  essem bSes 

Select component types

Enter nominal wall liickM M  

Enter lead  angle 

Enter return angle |y g  

Is snap  setflocfciegT yes

Enter mmdtnuni length of 
cantifavor 0.750000

Enter maximum mating force Iq

Enter maximusi separating force q

| plastic_plastlc I*
plastlc_plasUc
plasOc_metal

25

Ok Reset

Figure 5.7. Initializing Cantilever Configuration

The user can change the initial geometry by clicking on the CHANGE GEOMETRY 

button, which executes another method attached to the cantilever class. This method 

provides the user an opportunity to change any, or all, of the geometry data (Figure 5.8).

Geometry data

Enter length 

Enter width 

Enter thickness 

Enter undercut 

Enter lead  angle

0.675000

0.500000

0.125000

0.056448

35

Enter return angle

Ok Reset

Figure 5.8. Entering Geometry Data
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Finally, the user makes a material choice by clicking the SELECT MATERIAL 

button. This action provides a list of all the material instances, and asks the user to select 

one. Each of the actions — CONFIGURATION, CHANGE GEOMETRY and SELECT 

MATERIAL — also outputs the resulting values, or properties. Tne user can review the 

output and continue to make changes, enabling an expert designer to interact with the expert 

system to specify a configuration that is close to meeting the design specifications. A  

novice can merely use the initial configuration generated by the system.

At this point, the user asks the system to perform the design operations by clicking 

on the DESIGN button. This activates the inference mechanism, to process the applicable 

rules for this design situation. The expert system calculates the strain and the assembly 

forces resulting from this configuration and compares these values to the allowable values 

for the given material. The system then iteratively alters the geometry until a design 

meeting the specifications is reached.

An example design solution is illustrated in Figure 5.9. At this point, the user may 

want to make a material change or change the configuration and then ask the system to

Snap Joint Demonstration

iKtlon lorci,

length, L—1 \  lead

1

Configuration 

Change Geometry

Select Material

Design

Reset

Stop

S nap Joint Configuration Material Properties D esign  Specifications

Cross Section Geometry: constant Material: CoIibreBOO.1 D
Number of A ssem blies: multiple Type: Polycarbonate Strain 0.0269
M aterials: plastic_plastlc Properties 9  73F Allowable 0.0273
SstH ocking: y e s T ensile  S tress Q yield  8700 Meeting F orce 34J2
Length 0.750 Max 0.750 Elongation O yield  6.5
Width 05C0 Flexural Modulus 380000 Deflection F orce 16.8
Thickness 0.125 Comp S tress G yield  14000
Undercut 0.081 S tatic Coefficient of Friction Feature d a ta  written So
Ang!es:Lead 35 Return 75 P lastiq_Plastic 0.55 program  file: fead a ta
Force:Moting 0.0 S ep . 0.0 Plastic.Mot&J 0.45

*1 1 !■» *1 1 !■* •■I l I -

Figure 5.9. Design Results
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produce a new design. This approach involves the user in the final design, providing an 

analysis tool to the expert designer while incorporating his experience. It also provides a 

design tool for the novice, producing a part which meets the design specifications.

Several examples of the design process are given in Appendix B. These examples 

were generated using the rule tracing feature of Kappa PC and illustrate the way the rules 

are applied in solving the problems with different design constraints. Different solutions, 

or “good” designs, are produced for the various configurations since the rules axe applied 

in different sequences. Another tool for examining the reasoning process of the prototype 

system is the explanation facility, which explains how slot values are formulated in the 

design process. However, the explanation facility in Kappa PC was not activated for the 

prototype expert system. To include this facility in the expert system requires that 

explanations for each rule be entered in the comment field of the rule. Essentially the same 

information is available in the rule traces, but the explanation facility is more easily 

interpreted by a user.

INFERENCE STRATEGIES

The inference engine is responsible for searching the knowledge base and 

recommending a solution to the proposed problem. Specifically, the inference engine must 

decide where to start the inference process, which rules to fire when more than one is 

triggered (conflict resolution), and how to conduct the search, all in an effective and 

efficient manner.

Kappa PC provides a variety of methods to handle conflict resolution. Rule 

priorities can be assigned to control the reasoning path when more than one line of 

inference is possible. Rule sets can be established so only rules relevant to the task being 

performed are used, thus providing efficiency and modularity for the developer. And, 

Kappa PC provides four options for conflict resolution when more than one rule is eligible 

for firing: selective, breadth-first, depth-first, and best-first. The selective option is not 

exhaustive; only the first rule associated with the asserted facts is tested, thus only one 

successful path of reasoning is followed. Since the search is not exhaustive, it is more 

efficient The remaining options are all exhaustive, finding all possible implications of the 

data that initiated the chaining process. The breadth-first option evaluates all the rules
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associated with the asserted facts, before evaluating the next level of rules. The depth-first 

option evaluates one rule associated with the asserted facts and all its consequences, before 

evaluating other rules associated with the asserted facts. The best-first option combines 

features of the breadth-first and depth-first options, using rule priorities to select the “besf ’ 

rule to fire next, i.e., it looks at all the rule possibilities and selects the one with the highest 

priority.

The two search strategies employed in Kappa PC are forward ~nd backward 

reasoning. Forward reasoning, or data driven chaining, proceeds from premises (if part) 

toward conclusions (then part). It begins by declaring new facts and proceeds by matching 

known facts to the premises of rules. If all the premises of a rule are verified, the 

conclusions in the rules are asserted, generating new facts which can match the premises of 

more rules. Backward reasoning, or goal-driven chaining, tries to verify a fact, i.e., reach 

a goal, by finding rales which can prove the fact, in the conclusions, and then attempting to 

verify their premises. The premises in turn become new facts to be verified by other rules. 

The same rules can be used in both forward and backward reasoning.

A goal driven, or backward reasoning approach, is normally used in a design 

problem. In the cantilever snap joint design problem, a good design, i.e., a solution 

meeting the specifications, is defined by:

If ( e < allowable strain & assembly forces < allowable forces) 

then design is good.

Due to limitations in the early versions of the Kappa PC software, a backward reasoning 

strategy did not work. A simple solution to this obstacle was to use a forward reasoning 

strategy, incorporating a goal to terminate the reasoning.

The effects of the various conflict resolution options were also examined (see 

Appendix B). The order of rale assertion definitely affects the design solution and can 

result in a design which is over-corrected for the design constraints. This occurs for 

several reasons. A fairly large arbitrary increment was selected for the undercut, cantilever 

length, and angle modifications, which over-corrects the design solutions. Once a 

constraint is met, the application of additional design rules can result in further reductions,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

61

or over-corrections. However, additional design rules can be added to the expert system to

deal with both of these situations.

PROTOTYPE EVALUATION

Expert systems are generally validated by comparing the performance of the system

with that of an expert Formal measures, both quantitative and qualitative, have been

developed to ascertain the effectiveness of an expert system. The prototype expert system

was examined by an injection molding expert designer as well as injection molding

software developers.

The initial validation of the prototype expert system verified that analytical results

of the prototype match results from a commercial software package PD11. Results were

compared by calculating the snap joint undercut deflection for a range of loading conditions

and for the following materials:

ABS DOW Magnum 3661 
ABS DOW Pulse 1725 
ABS GE B30-0001 
ABS Mobay Bayblend 
Modified PPO Noryl N l-190  
Polycarbonate DOW Calibre 800 -10 
Polyamide DuPont Zytel-101
A TV■•IQ

A ^ C U U  L /U J L  U 1 1 L  iN c L L U l tU .

Calculations were also conducted independently to confirm the accuracy of the PD1 

program results. Using the same material property data, no significant differences were 

noted in the results.

A second evaluation was performed independently by two injection molding 

software developers, Mike Craven and Gregg Nicholas1. The evaluators were asked to 

address the following features of the prototype: correlation to known design solutions, 

procedures for data input, flexibility for altering configurations, design constraints, output 

usability and format, and ease-of-use. See Appendix E for a copy of the evaluation 

instrument Comments from the evaluators were positive, with only a single suggestion to

1 PDl, an IDES product for Injection Molding Part Design, is an on-line tutorial and interactive design 
tool for ribs, cross ribs and snap fits.

2 Integrated Design Engineering Systems, Inc., PO Box 2131 Laramie, WY 82070.
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post a busy message on the screen when the system is not expecting input from the user. 

This alerts the user to wait for the system to process the information.

An expert designer was then asked to review the performance of the prototype 

expert system. Mr. Robert Cramer3, a major contributor to the development of the PD1 

program, confirmed that the performance of the system closely matched his expertise. Mr. 

Cramer did suggest a modification to the operation /  user interface of the expert system to 

establish maximum dimensions for a projection which must fit in a constrained location. 

Changes to accommodate this modification were relatively easy to accomplish and attest to 

the usability of hybrid expert system shells for design problems. The changes were 

confined to a single class since similar functions are grouped in the object hierarchy.

The modifications have produced a more responsive expert system that more 

accurately reflects design concerns of a plastic part designer. The ability to easily adapt an 

expert system to user preferences produces a more useful design tool.

3 Associate Development Scientist, DOW Chemical Company, 433 Building, Midland MI.
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CHAPTER 6

INTEGRATION OF EXTERNAL KNOWLEDGE SOURCES

In a complex design problem, an engineer typically enlists a variety of computer- 

aided engineering tools to assist in the design process. A  solid modeling package is often 

used to develop a conceptual design and to provide powerful analysis tools; a commercial 

database o f material properties can assist in selecting appropriate materials for the product 

The prototype expert system resulting from this research can be added to the menu of CAE 

tools available to aid the product designer. The system approach to developing a plastic 

part, incorporating these tools interactively with a mechanical designer, is depicted in 

Figure 6.1.

PROSPECTOR 
Material Database

I-DEAS 
Solid Modeler

USER

ASCII
files

dBase
files

EXPERT SYSTEM PROTOTYPE

Analysis
Algorithms

Heuristic
Rules

Objects/
Methods

Figure 6.1. System Approach 
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The design scenario for this system approach involves a series of steps. The 

designer using a solid modeler, e.g., I-DEAS™ (Integrated Design Engineering Analysis 

System) available from the Structural Dynamics Research Corporation1, inputs a 

conceptual design to meet a set of functional specifications for a plastic part If a snap joint 

is required for the plastic part design, the designer invokes the prototype expert system to 

determine a set of geometric parameters meeting specifications for the required joint At 

this point in the design process, a material selection for the plastic part will have typically 

been made; if not the designer can rely on the expert system to incorporate knowledge 

contained in an external materials database, PROSPECTOR from IDES2, to assist in 

material selection. Since the expert system is interactive, an experienced designer can 

influence the parameter generation, based on his/her individual experience. The expert 

system, using the knowledge sources interactively with the designer, determines the 

feasibility of the conceptual design, and modifies the design, iteratively, until acceptable 

design parameters are generated for the snap joint

The expert system shell, Kappa PC, provides the capability for a developer to 

interface the expert system to external knowledge sources. Kappa PC interfaces to Lotus® 

1-2-3® spreadsheets, dBASE® databases, and external software through built-in functions. 

Kappa PC also provides functions to read and write ASCII files which extends interface 

capabilities to most software.

Without modification to the solid modeler, real time information exchange between 

the prototype expert system and the modeler is not possible. However, the prototype can 

effectively communicate with the solid modeler through the Kappa PC functions for ASCII 

file exchanges, to share geometry information. In addition to the geometry database, the 

solid modeler can also provide analysis tools such as finite element modeling, vibration 

analysis, mold filling/cooling analysis and graphical numerical control machining. These 

capabilities have not been demonstrated for the prototype expert system, but can be utilized 

at any point in the design process since the geometry database resulting from the solid 

modeler is common to each of these options.

1 Also available as CAEDS® (Computer Aided Engineering Design System) from IBM®
2 Integrated Design Engineering Systems, Inc., PO Box 2131 Laramie, WY 82070.
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The material properties for the cantilever snap joint design prototype are entered 

from a dBase compatible database, generated from the properties available in 

PROSPECTOR. This functionality is incorporated in the prototype system through the 

Kappa PC database functions, which map records from a database to objects in the expert 

system. This approach augments the expert system with material selection features in 

existing commercial software and takes advantage of the database capabilities for 

effectively, and efficiently, searching large material databases.

Since only a limited amount of code is required to perform the analysis for a snap 

joint, the prototype design embeds analysis capabilities in methods attached to the 

knowledge elements. In larger, more complex applications, the developer can incorporate 

external analysis programs by using Kappa PC functions to execute external programs and 

to pass arguments between the external programs and the expert system. Kappa PC also 

provides functions for reading and writing ASCII files to incorporate existing C code into 

methods attached to the knowledge elements.

EXTERNAL INTERFACE CAPABILITIES
The ASCn file transfer capabilities of Kappa PC provide a means for passing 

parameters to external programs. These capabilities include functions to open/close files, 

read characters or words, and write formatted text or internal Kappa PC files (classes, 

instances, rules, and functions). Using these functions, the prototype expert system is 

interfaced to a solid modeling package. External programs can also be executed from 

within Kappa PC, through a built-in function which passes up to three arguments to the 

external program.

Built-in functions interface Kappa PC to databases and spreadsheets, allowing 

Kappa PC to work directly with database or spreadsheet files. These functions open/close 

files, read/write selected data records or fields, and map Kappa PC slots to database fields. 

These functions also allow instances in the object-based hierarchy to be generated from the 

database information.

Kappa PC is available as a C library, to add intelligence capabilities to in-house 

programs; routines can be added to this library and called like any other Kappa PC 

functions. A run-time version is available to developers who want to incorporate Kappa 

PC into their software.
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SOLID MODELING SOFTWARE

The engineer has a host of solid modeling software available to assist with 

engineering design tasks. I-DEAS, a package widely used by the mechanical engineering 

community, is an integrated package of software tools incorporating a concurrent 

engineering approach to mechanical design problems. I-DEAS consists of a number of 

“Families” of products including Solid Modeling, Engineering Analysis, System 

Dynamics, Test Data Analysis, Drafting, and Manufacturing. These integrated modules 

form a fully functional design tool for the engineer.

The Solid Modeling family includes an Object Modeling module which creates 

objects either from a menu of primitive solids (blocks, cylinders, cones, spheres) or from 

extruding or rotating a profile. These objects can be modified by various construction 

operations; complex objects are constructed through Boolean operations to join objects with 

each other or to cut them from one another. A geometry database is also maintained, which 

can be used for mass and inertia property calculation, interference studies, finite element 

modeling, manufacturing, and generating engineering drawings.

The constant cross-section snap joint was modeled in I-DEAS by generating a 

profile and extruding the profile to form a solid object (Figure 6.2). The snap joint was 

then created as a feature with the following parameters: length, width, thickness, undercut, 

return angle, lead angle -- parameters generated by the prototype expert system as a result 

of the DESIGN process. (See Appendix D for a listing of the I-DEAS commands to 

generate the SNAPJOINT feature.

width 
(extruded distance) undercut

thickness

length
— lead angle 

return angle

Figure 6.2. Cantilever Snap Joint Object

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

67

The prototype expert system writes these parameters to a file, in I-DEAS program 

file format, through Kappa PC built-in functions for ASCII file exchanges. The function 

write_feadata accomplishes this information exchange and is listed in Appendix A.

Once the parameters are determined, the designer uses the I-DEAS Model File 

module to generate the snap joint object at a specified location. The designer selects the 

Program File function, followed by the RUN command to execute the program file 

generated by the prototype system. The program file CONSTRUCTS an object from the 

SNAPJOINT feature, which is stored in the FEATURES Universal Library file.

The I-DEAS construction commands snap two coincident faces together and then 

use various positioning options to properly align the two faces. The designer is asked to 

specify the planar faces to be joined (one on the snap joint object and the other on the 

plastic part) and then to designate the exact location on the plastic part for the snap joint 

object The snap joint object is thus attached to the nominal wall of the plastic part at a 

user specified location.

DATABASE SOFTWARE

One problem facing a plastic designer is the best choice of plastic material for a 

particular application. Thousands of commercial grades of plastic materials are available on 

the U.S. market making it nearly impossible for a designer to be familiar with the many 

blended and alloyed materials available. However, software tools exist to assist in 

selecting an appropriate material.

Plastic material properties are available in a commercial product PROSPECTOR. 

PROSPECTOR uses the capabilities of a sophisticated data management system,

FOXPRO®, to provide query, display, report capabilities, and graphical visualization aids, 

i The user interacts with PROSPECTOR to define a subset of materials that meet user

* specifications; data can be viewed in table or chart form to assist in defining the subset

The PROSPECTOR database contains over 18,000 plastic materials, each having 

up to one hundred attributes representing general material characteristics, physical, 

mechanical, thermal, electrical, and flammability data. The information in the database is 

acquired directly from material manufacturers and suppliers and conforms to ASTM
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specifications. A data sheet for a sample material, Calibre 800-4, is listed in Table 6.1.

The user can query the database for any combination of the properties on the data sheet, 

which are important for a particular application. For example, a plastic part might need to 

be transparent and able to withstand high installation temperatures.

PROSPECTOR offers the user two major menu options — Search and Display. 

Search allows the user to narrow the number of materials in the working database to only 

those of interest The user selects a property to search, which can be either a text field or a 

numeric field. If a text field is chosen, the user selects the desired items from a list of all 

possible values. The numeric search shows a distribution of the material property to aid in 

picking a range of data values for the search.

The Display option provides the user two formats for viewing the searched material 

properties. The Data Sheet shows all data for a selected material, while the Data Table 

shows selected properties for the working database. The database can be sorted according 

to a particular property, or the Locate function can be used to find a material with a specific 

property value. The user can then use the Data Sheet to view successive materials and their 

properties. Within the Data Table, the user specifies the properties to display for each 

material and the order to display the properties.

PROSPECTOR was modified to produce an ASCII report, since PROSPECTOR’S 

internal files are encrypted; the report is then used to generate a dBase compatible file which 

can be interfaced direcdy to the prototype expert system. A small amount of code 

development was necessary to generate a dBase compatible file from the PROSPECTOR 

output The program also enters material property data (e.g., coefficients of friction) that 

are not available in the PROSPECTOR database. The edit program is listed in Appendix C.

The interface capabilities of Kappa PC were then used to import the material 

properties from the database into the prototype expert system. The prototype expert system 

creates material instances from the external database and enters the database fields into the 

object slots of each material. The object-based hierarchy provides the capability of 

automatically generating the instances from the material database and updates the user 

interface to reflect the current material database. The function that accomplishes this 

interface, loaddb, is listed in Appendix A.
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Trade Name : Calibre 800-4 
Manufacturer: Dow Chemical U.S.A. 
Generic Name: Polycarbonate

 Property —
-General 

Agency Ratings 
Appearance 
Features

Filler Percent By Volume 
Filler Percent By Weight 
Filler/Additive 
Processing Methods

Recycled
Uses

-Physical 
ConL Service Temperature 
Glass Transition Tmp 
Linear Mold Shrink 
Melt Flow 
Melt Flow Condition 
MeltPt
Specific Gravity 
Water Absorption 24 hrs. 
Water Absorption @ Equil 

-Mechanical 
Compressive Modulus 
Compressive Strength 
Elongation @ Break 
Elongation @ "Yield 
Flexural Modulus 
Flexural Strength @ Yld 
Gardner Impact 
Hardness Value 
Notched Izod Impact 
Shear Modulus 
Shear Strength 
Tensile Impact Strength 
Tensile Modulus 
Tensile Strength @ Brk 
Tensile Strength @ Yld 
Unnotched Izod Impact 

-Optical 
Haze

Value ■

Ignition Resistant 
Mold Release, Good 
UV Resistant

Coextrusion
Blow Molding, Extrusion
Extrusion, Profile
Extrusion, Sheet
Blow Molding, Injection
Thermoforming
Yes
Appliances
Business Equipment
Electrical Parts
Lawn and Garden Equipment
Communication Application

6.000
4.00
0 - 3 0 0 - 0 1 .2  kg

1.2095
0.150
0.320

100.0
6.5
360000
14000

Rockwell Hardness M-Scale 59 
12.00 @ 73"F, 0.12500"

260.00 @ 73'F
330000
8500
8700
No Break @ 73"F, 0.12500"

Units --

%
%

-F
"F
mils/in 
g/10 min

%
%

Isi
h

%
psi
psi
in-lb

ft-lbfin
psi
psi
Ft-lb/inA2
psi
psi
psi
It-lb/in

%
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Refractive Index 
Transmittance 

-Thermal 
Brittle Temp
Coef Linear Thermal Exp 
Deflection Temp @ 264 psi 
Deflection Temp @ 66 psi 
Specific Heat 
Thermal Conductivity 
Vicat Softening Point 

-Flammability 
Limiting Oxygen Index 

-Electrical 
Dielectric Constant 
Dielectric Strength 
Dissipation Factor 
Surface Resistivity 
\blume Resistivity 

-Underwriter Labs 
Arc Resistance 
Comparative Tracking Ind 
High Volt Arc Res to Ign 
High Volt Arc Track Rate 
High-Ampere Arc Ignition 
Hot Wire Ignition 
Rel Temp Indx Mech w/Imp 
Rel Temp Indx Mech w/olmp 
Relative Track Ind Elect 
UL 94 Rating 

-Injection Molding 
Back Pressure 
Drying Temp 
Drying Time 
Freeze Temp 
Front Cylinder Temp 
Injection Pressure 
Injection Time 
Middle Cylinder Temp 
Minimum Wall Thickness 
Mold Tmp 
No Flow Temp 
Nozzle Tmp 
Processing Temp 
Rear Cylinder Temp 
Screw RPM 

-Thermoset 
Apparent Density 
Bulk Factor 
Mix Ratio By Volume 
Mix Ratio By Weight 
Mixed Viscosity 
Stoichiometry 

-Elastomer 
Compression Set 
Tens Modulus, 100% Elong 
Tens Modulus, 200% Elong 
Tens Modulus, 300% Elong 
Tens Modulus, 50% Elong

3.80000
266

310

40.00

3.00
405.00 
0.001000

V-0

%

inA-5/(in-“F)
“F
-F
BTU/lb "F
BTUin/hrftA2“F
"F

%

V/10-3 in

ohm 
ohm cm

seconds

#  of arcs 
seconds

psi
"F
hours
"F
"F
psi
seconds
"F
in
-p
“F
“F
"F
”F
rpm

lb/ftA3

cps

%
psi
psi
psi
psi
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HARDWARE /  SOFTWARE ENVIRONMENT

A major challenge facing computer-aided engineering software developers is 

interfacing a variety of tools that exist on an even wider range of hardware. For the 

prototype expert system, three distinct software implementations had to be considered: 

Kappa PC is a windows based PC product, PROSPECTOR is a DOS based PC product, 

and I-DEAS is a UNIX based workstation product Specific requirements for each of these 

software products are listed below.

The expert system shell Kappa PC is a general purpose C-based application 

development and delivery environment for PCs and requires the following system 

components:

• 286 or higher processor
• 640 KB RAM
• Hercules™ Graphics Card, EGA®, or VGA® Monitor

• 2 MB disk space
• MS-DOS 3.0
• Microsoft Windows 3.0

The PROSPECTOR commercial database, available from IDES, requires the following:

• IBM or compatible PC
• 4MB RAM
9 1  ̂A/TD /Jiolr c

A w/ XVXJL* UiOA

• Microsoft Windows 3.1 (Enhanced mode)

I-DEAS™, installed on a DECstation ULTRIX configuration requires:

• ULTRIX 4.2A
• DECWindows 4.2A
° PHIGS 2.3A and PEX 5.0 Graphics Libraries
• Fortran 77 v3.1
• 16 MB Memory
• 75 MB disk space (minimum / options additionally require up to 450MB)
• 150 MB swap space

The hardware /  software requirements of these software packages highly restrict the 

platforms that can support the integrated approach of the expert system application. Hence, 

the prototype expert system was implemented on an IBM DX266 (Model 77) OS/2 v2.11.
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The capabilities of the IBM system provide a seamless tool for the implementation of the 

integrated prototype system.

SUM MARY

The integration of CAE software tools for plastic part design significantly simplifies 

the design process. Incorporating existing CAE applications such as computer-aided 

design and solid modeling, material databases, and analysis software not only extends the 

utility of the prototype expert system, but provides the designer with a single, easy-to-leam 

and easy-to-use tool for generating the design for plastic parts. The utility of the prototype 

is further enhanced by interactively involving the designer in the design process.
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CHAPTER 7 

RESULTS AND CONCLUSIONS

Expert systems have been applied to a variety of engineering problems. Early 

successes have been recorded in derivation problems: monitoring manufacturing 

processes, diagnosing and predicting failures, controlling chemical processing, and 

advising FEM users. These systems are currently being implemented by the users of the 

systems, often with fairly easy-to-use PC expert system shells with robust development 

tools. Expert systems have also been developed in the last decade for formation problems 

in planning and design. However, most of these implementations have used the heuristic 

programming languages LISP and PROLOG or complex programming environments like 

KEE and ART.

This research has resulted in a prototype expert system implementation for an 

engineering design application: the design of a feature for an injection molded plastic part 

The prototype system was implemented using an expert system shell and has been 

evaluated by experts in both injection molding part design and software development The 

prototype was modified to reflect these evaluations; the resulting expert system performs 

closely to an expert designer and is relatively simple for a designer to use.

The prototype expert system addresses a fairly narrow domain. To be an effective 

design tool, the prototype must be extended from basic feature design to the design of 

complex parts and their corresponding molds and to other manufacturing processes. With 

the object oriented rule-based representation scheme, additional features and processes can 

be easily incorporated. However, the value of this prototype is in establishing the 

guidelines, or templates, for developing expert system tools for design processes.

Previous research in expert system applications for engineering design has not 

addressed the use of high level development tools, i.e., expert system shells. One 

exception is the development of an automated fixture design system (MEFDES by kumar,

73
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Nee, and Prombanpong 1992) which is a planning application that integrates an expert 

system, developed with the Nexpert Object expert system shell, with the ME30 CAD 

system. This research, on the other hand, addresses an engineering design application and 

integrates the expert system with a solid modeling system as well as external databases and 

interfaces to external software.

RESULTS

The goal o f this research was to develop a standard approach to implementing 

expert systems for engineering design applications. To pursue this goal, several 

fundamental tasks (or objectives) for developing an expert system for an engineering 

design application were explored and formalized:

• investigate the use of expert systems shells for design problems

• categorize the knowledge required to solve design problems

• formulate representations for the knowledge

• integrate the expert system with external databases and solid modeling software

• develop interactive capabilities, as well as graphical interfaces.

The accomplishments for each of these tasks, along with recommendations pertinent to 

expert system implementations for engineering design applications, are discussed in each of 

the following sections.

EXPERT SYSTEM SHELLS. The prototype application has demonstrated the 

feasibility of using shells to develop expert systems for formation problems. The 

successful implementation has identified features that are essential in an expert system 

development tool for an engineering design application: a variety of knowledge 

representations and capabilities to integrate external software; to develop an interactive, 

graphical user interface; and for explanation.

Kappa PC has proven to be a good development tool for design problems. The 

cantilever snap joint prototype development has demonstrated that knowledge characteristic 

to a design problem can be effectively represented in an object-oriented, rule-based system. 

The objects, and associated methods, are useful in representing materials and specifications 

data, as well as the engineering models and scientific principles used to analyze the design. 

The heuristics, which are an integral part of any design problem, are suitably represented
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by rules. Kappa PC provides capabilities to integrate the knowledge base with existing 

databases and software, including solid modeling systems. Kappa PC also provides an 

extensive development environment which facilitates rapid prototype implementation and 

interactive capabilities to integrate the user’s expertise with the system.

The prototype development has also demonstrated the ease of using an expert 

system shell for design applications. A user familiar with Kappa PC can develop a simple 

system, complete with a viable user interface, in a matter of hours. For the user who is 

also the design engineer, familiar with the design heuristics of the problem, knowledge 

acquisition for the system is a much simpler task. The design engineer is able to provide 

many of the rules from his/her own experience. Since many programming tasks have been 

incorporated in the development tools within Kappa PC, a typical engineer with limited 

programming skills will be able to use Kappa PC effectively. Thus Kappa PC is a 

powerful tool for the design engineer.

The demonstration system has illustrated the utility of expert system shells for 

engineering design problems. Expert system shells deal effectively with the complexity of 

engineering design, and they provide a designer, familiar with the design heuristics of a 

problem, with an easy-to-use tool that facilitates rapid development of an expert system.

CATEGORIZE KNOWLEDGE. A variety of knowledge typically found in design 

problems was identified: hierarchy of configurations and components, geometric 

information and constraints, material properties, specifications, analysis procedures based 

on governing equations, and heuristic design rules. The prototype system has specifically 

addressed each of the knowledge categorizations identified as key elements o f mechanical 

engineering design.

KNOWLEDGE REPRESENTATION.

A rule-based system is a good representation for the many guidelines and rules of 

thumb that are invoked in a design application. Generally, these rules take the form of “If- 

Then” procedures. However, the complexity of design does not lend itself to a procedural 

collection of these rules. Often, the expert designer cannot develop this set of procedures 

for a particular design problem but can formulate various rules, as premises leading to 

conclusions, that he uses to arrive at a proposed solution.
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An object-oriented environment is an excellent paradigm for representing the 

knowledge in engineering design problems. A mechanical design is often a hierarchy of 

components with specific attributes, which can be modeled by a network of objects and 

their slot values. The relationships between the components are similar to the relationships 

in a network and can be modeled with methods attached to the objects. These 

relationships, e.g., algorithmic analysis procedures, can also be executed as external 

programs. The remaining knowledge — materials and properties, geometric configurations 

and constraints, and specifications -- is also amenable to representation as objects.

INTEGRATION. The prototype system integrates two commercial products: the 

PROSPECTOR external materials database and Structural Dynamics Research 

Corporation’s I-DEAS™ (Integrated Design Engineering Analysis System). This 

integration expands the capability and flexibility of the expert system. Since engineering 

design often uses databases, either large materials databases or geometry databases, and 

involves any number of simple to complex analysis software packages, the expert system 

design aid must have the functionality to incorporate a variety o f external knowledge 

sources in engineering design applications. The integration can often be effectively 

accomplished through ASCII file exchanges.

INTERACTIVE. The prototype system exhibits an interactive user interface, which 

is instrumental in a user’s acceptance of an expert system. A well developed graphical 

interface affects how easy a system is to learn and contributes to the ease of use, and thus 

to the system’s eventual acceptance. The user interface must address the novice designer as 

well as the expert designer, allowing the user to participate in the design process.

The rich development environment of the expert system shell chosen for the 

prototype provides the developer with the means to generate a sophisticated user interface, 

incorporating graphical and interactive tools. The toolkit available in Kappa PC greatly 

simplifies the user interface development resulting in an effective, interactive interface. 

CONCLUSIONS

In design problems, a variety of knowledge is available for the design solution. 

Integrating all these knowledge sources into the expert system enhances the problem 

solving capabilities of the system. In the prototype expert system, the material information
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was loaded from a large materials database, demonstrating the interface capability with 

external databases. Realistic design problems need to incorporate an external materials 

database containing a wide range o f materials.

Tne algorithmic procedures relevant to designing a cantilever snap fit were 

implemented in the methods attached to the objects. However, the algorithmic procedures 

contained in the analysis software products available for engineering design are numerous 

and lengthy. A more effective approach for incorporating the algorithms in an expert 

system is to use the features of the shell to execute external procedures.

A  versatile interface accommodates a range of users — from the novice who uses the 

expert system as a tutor, to the expert who uses the system as a design aid or to validate a 

proposed design. An expert system is most powerful when it involves an expert user in the 

design process. The interactive capabilities of the prototype system incorporate the user as 

an additional knowledge source, extending the system from a tutorial package to a truly 

important design aid. The rule trace feature in Kappa PC provides essentially the same 

information as an explanation facility and was useful in developing the system; however, 

an explanation facility needs to be developed to extend the use of the prototype to novice 

users, who need a tutorial approach to the design application.

Other expert system tools are emerging as viable development tools for 

implementing sophisticated expert systems. Many of the vendors offer their products in the 

Windows environment and have incorporated objects and message passing capabilities and 

graphical tools for developing and debugging applications. Some of the major tools in 

addition to Kappa PC /  ProKappa, are Level5 Object, Nexpert Object, and TIRS and ESE 

(from IBM). Vendors are working to offer their products on multiple platforms providing 

the expert system developer more versatility in distributing expert system applications.

This new generation of expert system tools provides easy-to-leam and easy-to use software 

for expert system implementations.

Developing the expert system application also demonstrated a need to address the 

same concerns that arise in a large, comprehensive software project, i.e., modularity, 

maintainability, scalability, and validation /  verification. In developing the knowledge 

representations, efforts need to be made to provide modularity for the system. Modularity
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makes the system development more efficient and allows future extensions to be made with 

minimal disruption to the system. Modularity influences the maintainability of the system, 

but structured programming languages have had a more pronounced impact on the 

m aintainability of comprehensive software projects. High level tools, like expert system 

shells, assist the developer in structuring the system and provide an easily understood tool 

for maintenance tasks and for system development documentation. Object-oriented 

environments are inherently structured, and thus produce more maintainable systems. The 

value of an object-based approach was demonstrated when modifications were easily made 

to the prototype system. The scalability of the application needs to be addressed during the 

development of a prototype system since the prototype may not be applicable to larger, 

more complex problems. Finally the developer needs to formulate definite plans to verify / 

validate the system. Generally a good test for the expert system is to compare its 

performance to an expert, who has not been involved with the expert system development 

A hybrid expert system shell, based on an object-oriented knowledge representation 

coupled with production rules, provides a useful tool for the design engineer. The design 

engineer, familiar with separating a problem into components, can easily formulate the 

components as objects; he can also easily implement his design knowledge with “If-Then” 

rules. However, knowledge acquisition may still be a problem, even for the design expert 

The expert must be able to organize his design procedures and express the procedures in 

some representation, typically in production rules. This is not a trivial task, and the expert 

is often reluctant, or unable to carry out this step.

FUTURE RESEARCH

The prototype implementation characterized the various forms of knowledge used in 

design processes and identified corresponding knowledge representations. This work lays 

the foundation for expert system implementations for more complex problems, involving 

many interrelated design components.

The prototype demonstrated the importance of integrating the knowledge base with 

existing databases and analysis software. Thousands of materials exist for manufacturing 

plastic parts. Database features are often employed in selecting an appropriate subset of 

materials for a particular application, but the format of some existing databases is not
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directly compatible with the Kappa PC database interface. Standardization of database 

representations will promote the integration of existing databases with expert system 

knowledge bases. Incorporating the geometric and features databases generated by 

computer-aided design and solid modeling software into an expert system alleviates the 

user from providing this information to the system and ensures consistency of the data. In 

addition, the sophisticated design aspects of the CAE software can be exploited in 

developing the conceptual design.

More complex engineering problems require more advanced analysis tools, like 

finite element modeling. A widely used, integrated software system from the Structural 

Dynamics Research Corporation (SDRC), I-DEAS™, is used for conceptual design, 

analysis, detailed design and drafting, computer-aided testing and manufacturing of 

mechanical products. I-DEAS not only offers FEM capabilities, but also a solid modeling 

database, a material data system, dynamic analysis, numerical control machining and 

plastics analysis. Coupling an analysis tool like I-DEAS with an expert system produces 

an extremely valuable design aid and can be accomplished in one of three ways: 

embedding the expert system in the analysis tool, embedding the analysis tool in the expert 

system, or executing each system independently sharing information between the two 

applications through a blackboard architecture. For sophisticated systems like I-DEAS, the 

first approach provides the most flexibility to the designer; the full capabilities of the 

analysis tool are available for the design problem, while the expert system guides the 

design solution. The second approach is easier to implement and is appropriate for simpler 

analysis systems. Executing the two systems independently requires a great deal of 

communication between the systems, which may not be easily developed.

Extensive user interface features impact the acceptance and viability of a software 

product. Kappa PC provides a good set of graphical tools for developing an interactive, 

responsive user interface. More development in the user interface should focus on 

explanation and knowledge acquisition capabilities. Explanations of the reasoning used in 

the design process extend the role of an expert system to that of a computer-assisted 

instructor. A knowledge acquisition facility helps ensure that the expert system will 

continue to evolve and will continue to be used. Involving the expert user, as a knowledge
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source, and adding this knowledge to the database extends the usefulness o f the expert 

system design.

The modularity o f an object-based knowledge representation readily permits 

extensions to the prototype for the complete hierarchy of complex plastic parts: the nominal 

wall, projections off the nominal wall, and depressions into the nominal wall. These three 

classifications can be implemented as distinct classes; the snap joint class is a subclass of 

projections. Other features found in injection molding applications — annular snap-fits, 

ribs, bosses, holes — are subclasses o f the projection and depression classes. Complex 

features such as threads, springs, gears, and bearings are combinations of the basic 

elements. Manufacturing processes can be incorporated in the prototype through the use of 

rule sets. The rules used for injection molding processes can be grouped in a set; and sets 

can be constructed for other manufacturing processes.

An experienced designer routinely considers various factors for optimizing a 

design, e.g., weight, volume, and cost, and adjusts his designs accordingly. Rules can be 

added to the prototype expert system to incorporate optimization techniques in evaluating 

the design. I-DEAS includes an optimization task within the FEM module; existing 

software routines for optimization can also be executed using the shell interface capabilities 

to external programs.

A fully functioning expert system incorporating these complex features would 

provide a powerful design aid for the mechanical designer. A design engineer, using the 

SDRC solid modeling system, could develop a conceptual design; the resulting solid 

modeling databases would serve as knowledge sources for the expert system. Other 

knowledge sources would be constructed from the materials data system, heuristic rules for 

part design, and analysis software, such as finite element modeling. The expert system, 

using these knowledge sources interactively with the designer, would determine the 

feasibility of the conceptual design, and modify the. design, iteratively, until an optimum 

design is formulated. The expert system would thus facilitate cooperative problem solving 

among multiple experts.
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APPENDIX A

LISTINGS: CLASSES (INCLUDING METHODS), 
INSTANCES, RULES, FUNCTIONS

?**/
/** ALL CLASSES ARE SAVED BELOW **/
j  *  5je *  sje aje aje sje *  sje aje *  aje sje sje sje sje *  sje s i c *  sje sje aje sje aje aje *  aje ajeaje *  *  sje *  sjesje sje sje aje aje aje aje aje sje sje aje sje aje aje aje aje a*c sje aje aje aje a je ^

J  sje sje *  *  sje *  sje *  sje a j: sjesje sje aje sje sje sje *  *  *  aje afc *  *  *  *  *  *  aje *  aje *  sje *  aje *  *

**** CLASS: material
sje aje aje aje aje sje sje aje sje aje aje sje aje sje sle sje sje sje sje sje sjc sjc sje aje sjc sje sje aje sje aje sje sje sje sje sje sje sje y

MakeClass( material, Root);

/************** METHOD: select **************/
MakeMethod( material, select, [],

{
GetInstanceList( material, Globahmatlist);
AppendToList( Globahmatlist, "NEW MATERIAL DATABASE" ); 
cantilever:material_type = PostMenu( "Select a material", Global:matlist);
If ( Global:feature:material_type #= "NEW MATERIAL DATABASE")

TTien loaddb( );
});

/************** METHOD: output mat **************/
MakeMethod( material, output_mat, [],

{
CiearTranscriptImage( output_mat);
DisplayText( output_mat, FormatValue( "Material: %s", Global:feature:material_type)); 
DisplayText( output_mat, FormatValue( "\nType: %sVnProperties @ 73F", 

Global:featuie:material_type:type));
DisplayText( output_mat, FormatValue(

"\nTensiIe Stress @ yieia%8.0f\nElongation @yieid%10.if”, 
Global:feature:material_type:tensile_stress, Global:feature:material_type:elongation)); 

DisplayText( output_mat, FormatValue("
\nFlexural Modulus%12.0f\nComp Stress @yield%10.0f’, 
Global:feature:material_type:flexural_modulus, 
Global:feature:material_type:compressive_stress));

DisplayText( output_mat, FormatValue( "\nStatic Coefficient of Friction\n 
Plastic_Plastic% 10.2f\n Plastic_Metal% 10.2f’,

Global:feature:material_type:mu_plastic_plastic, 
Global:feature:material_type:mu_plastic_metal));

});
MakeSlot( materiahtype);
MakeSlot( material:flexural_modulus);
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SetSlotOption( material:flexural_modulus, VALUEJTYPE, NUMBER); 
MakeSlot( materialielongation);
SetSlotComment( materiahelongation, Percentage);
SetSlotOption( material:elongation, VALUEJTYPE, NUMBER ); 
SetSlotOption( materiahelongation, MINIMUM_VALUE, 0 );  
SetSlotOption( materialielongation, MAXIMUM_VALUE, 100); 
MakeSlot( material:mu_plastic_plastic);
SetSlotOption( material:mu_piastic_plastic, VALUE_TYPE, NUMBER ); 
MakeSlot( material:mu_plastic_metal);
SetSlotOption( material:mu_plastic_metal, VALUEJTYPE, NUMBER); 
MakeSlot( material:tensile_stress );
SetSiotOption( material:tensile_stress, VALUE_TYPE, NUMBER); 
MakeSlot( material:compressive_stress);
SetSlotOption( material:compressive_stress, VALUE_TYPE, NUMBER); 
MakeSlot( materiahflag);
SetSlotOption( materiahflag, ALLOWABLE_VALUES, yes, no ); 
materiahflag = NULL;

**** CLASS: design
%  :je  sfe j$c sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje aje sje sje sje sje sje sje sje sje sje aje sje sje sje s jc ^

MakeClass( design, Root);
MakeSlot( design :area); 
designrarea = 0.062500;
MakeSlot( design:allowstrain); 
desigmallowstrain = 0.027300;
MakeSlot( design:deforce); 
design:deforce = 14.391043;
MakeSlot( designrfactor); 
design:factor = 1.0;
MakeSlot( design:mateforce); 
designrmateforce = 22.796429;
MakeSlot( design:sepforce ); 
design:sepforce = 11360179;
MakeSlot( design:strain); 
design:strain = 0.021492;
MakeSlot( design :tensile_stress); 
design:tensile_stress = 181770601.120000; 
MakeSlot( design:compressive_stress); 
design:compressive_stress = 8101.862864; 
MakeSlot( design:mu); 
design:mu = .55;
MakeSlot( designrcriteria); 
designrcriteria = good;
MakeSiot( desigmiength); 
designrlength = 0.70;

^ s je  sje sje sje sje sje sje sje sje s j: sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje s j:  sje sje sje sje sje sje

**** CLASS: feature
s je s je s jc s jc s je s je s je s je s je s je s je s je s je s je s je s je s jc s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s jey

MakeClass( feature, Root);
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I*/L  sje 3*C aje sje sje aje >je aje a*c aje aje aje sje sje sje aje aje aje aje aje sj? aje aje aje aje aje aje sje aje aje sje aje aje aje aje aje

**** CLASS: nominal_wall
*  ale ale aje aje a|e aje aje aje aje aje aje aje sje aje aje ale aje aje aje aje *  aje a»e aje aje aje aje sje aje *  *  aje sje aje aje a je^

MakeCIass( nominal_walI, feature);
^ a je  aje aje aje afe sfc aje aje aje *  sje aje aje aje aje aje aje aje sje aje aje aje sje aje aje aje aje aje aje ale aje sje aje aje aje sje *

**** CLASS: projections
%  aje aje aje a}; aje aje a}: aj: sje aje aje ajeajeaje aje a}: s je  aje sje aj: sfe aje aje *  *  a j: aje aje aje sje aje aje aje aje aje a jey

MakeClass( projections, feature);

**** CLASS: snap_joint
s|t *  +  j|cj|s *  * * * * * * * * * *  * *  * * * * * * * * * *  *  * *  *  * * * *  * /

MakeClass( snap jo in t, projections );

^ a je  aje a j: a)e sje aje 3je sic j }c afc sic aje aje aje aje aje aje aje sje aje sje aje aje aje aje sje sje sje aje ate aje aje aje aje aje a j: aje

**** CLASS: cantilever
aje a}; aje aje sje aje aje aje a j: aje aje aje sje aje aje aje aje aje afc aje sje aje aje aje aje aje afc aje aje aje aje aje aje aje aje aje a je^

MakeClass( cantilever, snap j o in t );

/************** METHOD: change_geometry **************/
MakeMethod( cantilever, change_geometry, [],

{
PostfnputForm( "Geometry data”, cantilevenlength, "Enter length",

cantilevenwidth,"Enter width", cantileventhickness, "Enter thickness", 
cantilevenundercut, "Enter undercut", cantilever:lead_angle, "Enter lead angle", 
cantilever:retum_angle,"Enter return angle");

});

/************** METHOD* init **************/
MakeMethod( cantilever, init, Q,

{
PostInputForm( "Initial design configuration",

cantilevengeometry,"Select type of geometry", 
cantilevenflex, "Select number of assemblies", 
cantilever:material_mating, "Select component types", 
cantilever:NW, "Enter nominal wall thickness", 
cantilever:lead_angle, "Enter lead angle", 
cantilever:retum_angle,"Enter return angle", 
cantilever:self_locking, "Is snap self locking?", 
cantilevenmaxlength, "Enter maximum length of cantilever", 
cantilevenmateforce, "Enter maximum mating force", 
cantilevensepforce, "Enter maximum separating force"); 

cantileventhickness = .5 * cantilever:NW; 
cantilevenlength = 5.4 * cantileventhickness;
If Nuil?( cantilevenmaxlength )

Then ( cantilevenmaxlength =  3 * cantilevenNW)
Else If ( cantilevenmaxlength > 3 * cantilevenNW)

Then {
cantilevenmaxlength = 3 * cantilevenNW;
PostMessage( "Resetting Max Length to 3*Nominal Wall");
};
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If ( cantilevenlength > cantilevenmaxlength)
Then cantilevenlength = cantilevenmaxlength; 

cantilevenwidth = 4 * cantileventhickness; 
cantilevenundercut = .176 * cantilevenlength;
Global:angle = 90 - Atan( design:mu) * 180 /  3.14159;
If Null?( car.tilevensepforce)

Then cantilevensepforce = 0;
If Null?( cantilevenmateforce)

Then cantilevenmateforce = 0;
});

/************** METHOD: output config **************/
MakeMethod( cantilever, output_config, [],

{
ClearTranscriptImage( output_config);
DisplayText( output_config, FormatValue( "Cross Section Geometry: %s \nNumber of 

Assemblies: %s\nMaterials: %s \nSelf-locking: %s ”,
cantilevengeometry, cantilevenflex,cantilever:material_mating,cantilevenself_locldng)); 

DisplayText( output_config, FormatValue(
"\jiLength % 11.3f Max%8.3f\nWidth %13.3f\nThickness %7.3f\nUndercut %8.3f', 

cantilevenlength, cantilevenmaxlength, cantilevenwidth, cantileventhickness, 
cantilevenundercut));

DisplayText( output_config, FormatValue( "\nAngles:Lead%6.0f Retum%6.0f', 
cantilever:lead_angle, cantilever:retum_angle));

DisplayText( output_config, FormatValue( "\nForce:Mating%6.If Sep.%8.If', 
cantilevenmateforce, cantilevensepforce));

If ( cantilevengeometry #= constant)
Then ( Bitmap l:FileName = snconst.bmp)
Else If ( cantilevengeometry #= hdecreasing)

Then ( Bitmap l:FileName = snthk.bmp)
Else Bitmapl:FileName = snwidth.bmp;

Drawlmage( Bitmap 1);
});

METHOD' calculate ***=!'**********/
MakeMethod( cantilever, calculate, [],

(i
If ( cantilevengeometry #= constant)

Then ( desigmfactor = .67 )
Else If ( cantilevengeometry #= bdecreasing)

Then ( desigmfactor = 1.09)
Else desigmfactor = .86; 

desigmstrain = cantilevenundercut * cantileventhickness /  desigmfactor /  
cantilevenlength A 2;

If ( cantilevenflex #= single)
Then ( desigmfactor = .7 )
Else desigmfactor = .42;

design:allowstrain = desigmfactor * cantilever:material_type:elongation /100; 
desigmdeforce = cantilevenwidth * cantileventhickness A 2 /  6 *

cantilever:materia!_type:flexural_modulus * desigmstrain /  cantilevenlength;
If ( cantilever.material_mating #= p!astic_plastic )

Then ( desigmmu = cantilever:material_type:mu_piastic_plastic)
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Else designrmu = cantilever:material_type:mu_plastic_metal; 
design:mateforce = designrdeforce * ( design:mu + Tan( cantilevenlead_angle*

3.14159 / 1 8 0 ) ) / ( ! -  design:mu * Tan( cantilever:lead_angle * 3.14159 /1 8 0 ) ) ;  
designrsepforce = design:deforce * ( design:mu + Tan( cantilever.retum_angle *

3.1415 /  1 8 0 ) ) / ( ! -  design:mu * Tan( cantilever:retum_angle * 3.14159 /180));  
If ( cantilevengeometry #= constant)

Then ( desigmfactor = 1.0)
Else If ( cantilevengeometry #= bdecreasing)

Then ( desigmfactor = .5 )
Else desigmfactor = .25; 

desigmarea =  desigmfactor * cantilevenwidth * cantileventhickness; 
design:tensile_stress = designrsepforce /  desigmarea +

cantilever:material_type:flexural_modulus * desigmstrain; 
design:compressive_stress = cantilever:material_type:flexural_modulus * desigmstrain 

- designrmateforce /  desigmarea; 
designrlength = cantilevenlength;
});

/************** METHOD: output_soln **************/
MakeMethod( cantilever, output_soln, [],

{
ClearTranscriptImage( output_soln );
DisplayText( output_soln, FormatValue( "\nStrain %10.4f\nAllowable % 8.4f, 

design rstrain, designrallowstrain));
DisplayText( output_soln, FormatValue( "\n\nMating Force %10.1f\n", 

designrmateforce));
If ( cantileverrselfjlocking #= no )

TTien DisplayText( output_soln, FormatValue(”\nSeparating Force%10.1f\n", 
designrsepforce));

DisplayText( output_soln, FormatValue( "\nDeflection Force%10.1f\ designrdeforce ));  
DisplayText( output_soln, FormatValue( "\n\nFeature data written to \nprogram file:

■faoHotn" VAVUUUVU J  J )

});

MakeSlot( cantilevenflex);
SetSlotOption( cantilevenflex, ALLOWABLE_VA.LUES, single, multiple ); 
cantilevenflex = multiple;
SetSlotOption( cantilevenflex, PROMPT, "Select number of assemblies");
MakeSlot( cantilevengeometry);
SetSlotOption( cantilevengeometry, ALLOWABLEJVALUES, constant, hdecreasing, 
bdecreasing);
cantilevengeometry = hdecreasing;
SetSlotOption( cantilevengeometry, PROMPT, "Select type of geometry");
MakeSlot( cantileverrlead_angle);
SetSlotOption( cantilevenlead_angle, VALUEJTYPE, bitJMBER ); 
cantilevenlead_angle = 35;
MakeSlot( cantilevenlength);
SetSlotOption( cantilevenlength, VALUEJTYPE, NUMBER); 
cantilevenlength = 0.675000;
MakeSlot( cantilever:material_mating);
SetSlotOption( cantilevenmaterial_mating, ALLOWABLE_VALUES, plastic_plastic, 
plastic_metal);
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cantilever:material_mating = plastic_plasiic;
SetSlotOption( cantilever:material_mating, PROMPT, "Select component types"); 
MakeSlot( cantilevenmaterial_type );
SetSlotOption( cantilever:material_type, VALUEJTYPE, OBJECT ); 
SetSlotOption( cantilever:material_type, ALLOWABLE_CLASSES, material); 
cantilever:material_type = Calibre.800.10;
MakeSlot( cantilevenmateforce);
SetSiotOption( cantilevenmateforce, VALUEJTYPE, NUMBER); 
cantilevenmateforce = 0;
MakeSlot( cantileventhickness);
SetSlotOption( cantileventhickness, VALUEJTYPE, NUMBER); 
cantileventhickness = 0.125000;
MakeSlot( cantilevenwidth);
SetSlotOption( cantilevenwidth, VALUEJTYPE, NUMBER); 
cantilevenwidth = 0.500000;
MakeSlot( cantilever:retum_angle);
SetSlotOption( cantilever:retum_angle, VALUE_TYPE, NUMBER); 
cantilever:retum_angle = 60;
MakeSlot( cantilevenundercut);
SetSlotOption( cantilevenundercut, VALUEJTYPE, NUMBER); 
cantilevenundercut = 0.056448;
MakeSlot( cantilevenNW);
SetSIotOption( cantilevenNW, VALUE_TYPE, NUMBER); 
cantilevenNW = .25;
MakeSlot( cantilever:self_locking);
SetSlotOption( cantilevenselfjocking, ALLOWABLEJVALUES, yes, no ); 
cantilever:self_locking = yes;
MakeSlot( cantilevensepforce);
SetSlotOption( cantilevensepforce, VALUEJTYPE, NUMBER ); 
cantilevensepforce = 0;
MakeSlot( cantilevenmaxlength); 
cantilever:maxlength = 0.750000;

j  3>e jje  sje jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  jje jje  jje  jje  jje  sje sje sje jje  sje sje jje sje aje jje  jje  :je  jje

**** CLASS: torsional
j je j je j je : je j je j jc j jc j{ e : je j jc j je j je j je j jc j jc j je j je j je j je : je j je j je j je j je j j e : j e j{ e j je j{ e j je j je j je j{ e j je j jc j { e j (e ^

MakeClass( torsional, snap_joint);

**** CLASS: annular
jje  sje jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  sje jje  jje  jje jje  sje jje  jje  jje jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  jje  j j e ^

MakeClass( annular, snap_joint);

***** CLASS: ribs 

MakeClass( ribs, projections);

y j j e  jje j je  jje j je j je j je j je  jje jje jje  jje  jje j je j je j je  jje j je  jje jje  j je jje  jje jje  jje jje jje  jje  jje  jje jje  jje jje jje  jje jje jje

**** CLASS: depressions 

MakeClass( depressions, feature);
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j jf .  :jc sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sic sje sje sje sje sj: sje sje sje sje sje sje sje sje sje aje jje sje sje sje sje sje sje sje sje aje sje jje sje sje ale sje sje^

/** ALL INSTANCES ARE SAVED BELOW **/
ĵ)e+ + + **** sje ** Jje * s(c ** **=!<******!!'** =i< * =f=

MakeSlot( Globalrmatlist);
SetSlotOption( Globalrmatlist, MULTIPLE);
SetValue( Globalrmatlist, Bayblend.FR. 1439, Calibre.800.10, Magnum.3661,
Pulse. 1725, "NEW MATERIAL DATABASE" );
MakeSlot( Globalrangle);
SetSlotOption( Globalrangle, VALUEJTYPE, NUMBER);
Globalrangle = 61.189194;
MakeSlot( Globalrfieldnames);
SetSlotOption( Globalrfieldnames, MULTIPLE );
SetValue( Globalrfieldnames, TYPE, MODULUS, ELONGATION, MUJPP, MUJPM, 
TSTRESS, CSTRESS );
MakeSlot( Globalrslotnames);
SetSlotOption( Globalrslomames, MULTIPLE);
SetValue( Globalrslotnames, type, flexural_modulus, elongation, mu_plastic_plastic, 
mu_plastic_metal, tensile_stress, compressive_stress, flag);
MakeSlot( Globalrinstance);
Globalrinstance = Zytel.l01..Dry.;
MakeSlot( Globalrnum);
Globalrnum = 6;
MakeSlot( Globalrfeature);
Globalrfeature = cantilever;
MakeSlot( Globalrxscreen);
Globalrxscreen = 1024;
MakeSlot( Globalryscreen);
Globalryscreen = 768;
MakeSlot( GlobairRuleSet);
SetSlotOption( GlobairRuleSet, MULTIPLE);
SetValue( GlobairRuleSet, ckstrain, cktensile_stress, ckcompressive_stress, ckdesign, 
cktensile, ckcompressive, smallest_lead_angle, largest_lead_angle, ckretum_angle, 
ckselfjocking, cknotself_locking, ckmateforce, ckmateforce2, cksepforce, cksepforce2, 
ckstrain2, cklength);

j***********************:****:*:*********
**** INSTANCE; geometry
sje s je s je s je s je s je s je s je s jss jc s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je ^

Makelnstance( geometry, Button); 
geometry rX = 384; 
geometryrY = 119;
geometryrTitle = "Change Geometry"; 
geometryrWidtn = 192; 
geometryrHeight = 38; 
geometry; Visible = TRUE; 
geometryrAction = change_geometry; 
geometryrShowBorder = TRUE;
Resetlmage( geometry );
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JJf. sje sje sje sje sje sje sje sje sje sje sje sje sj: sje *  *  H6 *  ̂  *  sj: sje sje sje sje sje sje sje aje sje aje sj: sje sje sje sje

**** INSTANCE: process
sje sje a}c sje sje sje sje sje sje sje sje sje sje sje sje sje %  sje sje sje sje sje sje sje sje aje sje sje sje sje sje s j: sje s|e  sje sje s je ^

Makelnstance( process, Button); 
process:X = 384; 
process:Y = 203; 
process:Title = Design; 
process:Width = 192; 
process:Height = 38; 
process: Visible = TRUE; 
process:Action = process; 
process:ShowB order = TRUE;
Resetlmage ( process );

j  sje  sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje s j: sje sje aje sje sje sje sje s jt sje sje sje sje

**** INSTANCE: Text4
s je s je s je s je s je s je s je s je s je s je a je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s jc s je s je s je s je s je s je s je s je s je s je s je^

Makelnstance( Text4, Text);
Text4:X = 153;
Text4:Y = 76;
Text4:Width = 307;
Text4:Height = 38;
Text4:Visible = TRUE;
Text4:Title = "Snap Joint Demonstration"; 
Text4:ShowBorder = TRUE;
Text4:TextSize =15;
Text4:Transparent = true;
Resetlmage ( Text4 );

j i f  sje sje sje sje sje sje sje sje sje sje aj: sje sje sje sje sje sje sje sje sje sje sfc sje sje sje sje sje sje sje sje sje s j: sje sje sje sje

**** INSTANCE: output_soln
sje sje sje sje s j:  sfc sje sje sje sje sje jje  sje sje sje s j: sje sje sje s j: sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje s je ^

Makelnstance( output_soln, Transcript); 
output_soln:X = 655; 
output_soln:Y = 422; 
output_soln:Visible = TRUE; 
output_soln:Width = 307; 
output_soln:Height = 268;
Resetlmage ( output_soln );

**** INSTANCE: output_config

Makelnstance( output_config, Transcript); 
output_config:X = 20; 
output_config:Y = 422; 
output_config:Visible = TRUE; 
output_config:Width = 307; 
output_config:Height = 268;
Resetlmage ( output_config );
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89

y sjc  sje sje sje sje sje sje sje sje sj: sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje *  sje sje sje sje sje sje sje sje sje sje sje

**** INSTANCE: output_mat
sje sje 3$c sje sje sje sje s j :  sje s(e sje sje sje sje ale sje sje s je  sje sje sje afc sje %  sje sje sje sje sje sje sjt sje sje sje sje sje s je y

Makelnstance( output_mat, Transcript); 
output_mat:X = 348; 
output_mat:Y = 422; 
output_mat: Visible = TRUE; 
output_mat:Width = 307; 
output_mat:Height = 268;
Resetlmage ( output_mat );

y s je  sje sje sje sje sje sje sje sje sje sje sje sje 3jc sje sje sje sje  sje sje sje s j: sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje

**** INSTANCE: select_material
sje sje sje sje sj? sje sje sje sje sje sje sje sje sje sje £  sje sje  sje sje 9fe s}c sje sje sje sje sje s|c sje sje sje sje sje sje sje sje a(c y

Makelnstance( select_material, Button ); 
select_material:X = 384; 
select_material:Y = 161; 
select_material:Title = "Select Material"; 
select_material:Width = 192; 
select_material:Height = 38; 
select_material:Visible = TRUE; 
select_material:Action = select; 
select_material:ShowBorder=TRUE;
Resetlmage ( select_material );

y s jc  sje sje sje s j: sje sje sje sje sje sje sje sje sje sje s j: sje sje sje sje sje s jt sje sje sje sje sje sje sje sje s j :  sje %  sje sje sje sje

**** INSTANCE: Textl
sje sje sf: sje sje s f :  sfe sfe sfc sje sje sje sje sje sje sje sfe aje sje sje s f : sje sje sje sje sje s}e sj: sje sf: sje s j: aje sfe sje sf: s je y

Makelnstance( Textl, Text);
Textl:X = 20;
Textl :Y = 384;
Textl :Width = 307;
Textl:Height = 38;
Textl :Visible = TRUE;
Textl:Title = "Snap Joint Configuration";
Textl :ShowBorder = TRUE;
Resetlmage ( Textl );

**** INSTANCE: Text3
s je  sje sfe s je  sje sje sje sje sje sfe sje sje sje s je  sje sje sfe  sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sfe sje sfe sje s je ^

Makelnstance( Text3, Text);
Text3:X = 655;
Text3:Y = 384;
Text3:Width = 307;
Text3:Height = 38;
Text3: Visible = TRUE;
Text3:Titie = "Design Specifications";
Text3:ShowB order = TRUE;
Resetlmage ( Text3 );
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y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INSTANCE: Text2
* *  s |t  *  s i t  sjc *  s it  * * *  s it * *  +  * * * *  sit * * * *  sic s i t  *  Jlc Jjc y  *  =l'=i'=i«

Makelnstance( Text2, Text);
Text2:X = 348;
Text2:Y = 384;
Text2:Width =  307;
Text2:Height = 38;
Text2:Visible = TRUE;
Text2:Title = "Material Properties"; 
Text2:ShowBorder = TRUE;
Resetlmage ( Text2 );

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

**** INSTANCE: Bitmapl
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

Makelnstance( Bitmapl, Bitmap );
BitmapkX = 153;
Bitmapl :Y = 115;
Bitmapl :Visible = TRUE;
Bitmapl :FileName = snconst.bmp;
Bitmap l:FitToScreen = FALSE;
Bitmap l:Width = 307;
Bitmap l:Height= 192;
Resetlmage ( Bitmapl );

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

**** INSTANCE: stop
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

Makelnstance( stop, Button); 
stop:X = 384; 
stop:Y = 288;
S t r tn * T it la  — C tA n*  

io o <  jl iu w  —

stop:Width = 192; 
stop:Height =  38; 
stop:Visible = TRUE; 
stop:Action = stop; 
stop:ShowBorder = TRUE;
Resetlmage ( stop );

**** INSTANCE: configuration
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

Makelnstance( configuration, Button); 
configuration^ = 384; 
configuration^ = 76; 
configuration:Title = Configuration; 
configuration:Width = 192; 
configuration:Height = 38; 
configuration:Visible = TRUE; 
configuration:Action = config; 
configuration:ShowBorder = TRUE;
Resetlmage ( configuration );
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y ^ c ^ c j J c s f c ^ c s J c s j c s i c s l c s i e s j e ^ c ^ j j c s j e s j c ^ c s j c s i e ^ c ^ c s J c s i e ^ s i c s i c ^ ^ ^ c ^ c j j e ^ ^ c j i c ^ c s j c ^ c

n jc s j t s j o i :  INSTANCE: NW_button

Makelnstance( NW_button, Button);
NW_button:X =  153;
NW_button:Y =  307;
NW_button:Title = "Nominal Wall"; 
NW_button:Widtn = 153;
NW_button:Height = 38;
NW_button: Visible = FALSE;
Resetlmage ( NW_button );

sje aje sje 3jc sjc sje s}c ajc +  sjc sje :je  sje sje sje sje sje aje sje sje sje sje sje sje sje sje sje sje s>e sje sje sje sje sje sje

**** INSTANCE: proj_button
s jc s je s je s je s je s je s je s je s jc s je s jc s je s je s je s je s je s je s je s^ s je s je s jc s je s je s fe s je s jc s je s je s je s je s je s jc s je s je s je s je^

Makelnstance( proj_button, Button); 
proj_button:X = 153; 
proj_button:Y = 384; 
proj_button:Title = Projections; 
proj_button:Width = 153; 
proj_button:Height = 38; 
proj_button:Visible = FALSE; 
proj_button:Action = projections;
Resetlmage ( proj_button );

^ s j c  sje sje sje sje sje sje sje sje sjc sje sje sje sje sje sjc sje sje sje sje sje sje sje sje sje sje sje sjc sje sje sic sje sje sje sje sje sjc

**** INSTANCE: dep_button
sjc s]c sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sjc sje sje sje sje sjc sje sjc sje sje sje sje sje s{e sje sje sje sjc sje j

Makelnstance( dep_button, Button); 
dep_button:X = 153; 
dep_button:Y = 460; 
dep_button:Title = Depressions; 
dep_button:Width = 153; 
dep_button:Height = 38; 
dep_button: Visible = FALSE;
Resetlmage ( dep_button );

j  sje sje sjc sje sje sje sje sjc sje sje sjc sje sjc sje sje sjc sje sje sje sje sje sje sje sje sje sjc sjc sje sje sje sjc :*e sje sje sje sjc sje

**** INSTANCE: sj_button

Makelnstance( sj_buttcn, Button); 
sj_button:X = 384; 
sj_button:Y = 364; 
sj_button:Title = "Snap Joints"; 
sj_button:Width = 153; 
sj_button:Height = 38; 
sj_button:Visible = FALSE; 
sj_button:Action = snap_joints;
Resetlmage ( sj_button );

z.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ysjc  s$e sje sje sje sje sjc sjc sje sjc sjc sje sjc sje sjc sje sic sje sje sjc sje sje sje sjc sjc sje sje sje sje sje sjc sje sje sje jjc sje sje

**** INSTANCE: ribs_button
sic sje sjesje sje sjc sje sje sjc sje sje sje *  sje sje sje sje sjc ale sje *  s*c sje *  sje sje sje sje sje sje sje sjc sje sje sje sje s je ^

Makelnstance( ribs_button, Button); 
ribs_button:X = 384; 
ribs_button:Y = 422; 
ribs_button:Title = Ribs; 
ribs_button:Width = 153; 
ribs_button:Height =  38; 
ribs_button: Visible =  FALSE;
Resetlmage ( ribs_button );

j  sje sjc sje sjc sje sjc sje sje sje sje sjc sjc sjc sic sjc sjc sje sjc sje sje sjc sje sje sjc sje sje sje sje sje sje sje sjc sjc sjc sjc sje sje

**** INSTANCE: cant_button
sje  sje sje sjc sjc sje sjc sle sje sje sje sjc sje sje sje sje sje sjc sjc sje sjc sjc sje sjc sje sje sje sje sje sjc sje sjc sje sje sjc sje ajc yf

Makelnstance( cant_button, Button); 
cant_button:X = 614; 
cant_button:Y = 326; 
cant_button:Title = Cantilever, 
cant_button:Width = 153; 
cant_button:Height = 38; 
cant_button:Visible =  FALSE; 
cant_button:Action =  start_cant;
Resetlmage ( cant_button );

**** INSTANCE: tor_button
s jc s je s je s jc s jc s jc s jc s jc s je s jc s jc sS e s je s je s jc s jc s je s je s jc s je s je s jc s jc s je s je s je s je s je s jc s je s je s je s je s je s je s je s jey

Makelnstance( torjoutton, Button ); 
tor_button:X = 614; 
tor_button:Y = 384; 
tor_button Title = Torsional; 
tor_button:Width = 153; 
tor_button:Height = 38; 
tor_button:Visible = FALSE;
Resetlmage ( tor_button );

j  sje sje sje sje sjc sjc sje s|c sjc sjc sjc sje sje sje sje sje sjc sje sje sjc sjc sje sjc sje sjc sje sje sje sje s|c sjc sje sjc sjc sje sje sje

**** INSTANCE: ann_button
s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s jc s je s jc s je s je s je s je s je s je s je s je s je s je s je s je s je s jc s jc s je s jey

Makelnstance( ann_button, Button ); 
ann_button:X = 614; 
ann_button:Y = 441; 
ann_button:Title = Annular; 
ann_button: Width =  153; 
ann_button:Height = 38; 
ann_button: Visible = FALSE;
Resetlmage ( ann_button );

g.
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^ s j e ^ s J c ^ c ^ s i e s f c s J c s j c s i c ^ c s i c s j e s i c s J e ^ j^ a l e j f e ^ e ^ e s i e s j c ^ c s i c s j c s j c s i c s l c ^ c ^ c ^ c ^ e ^ c s i c s i c ^

**** INSTANCE: reset
sje ale sje sje sje sje sje sje sje sje sle sje sje sje sje sje sje sje sje sje sje sje sje sje sjc sje A  sje A  sjc sje sje sjc sjc sje sje s jc ^

Makelnstance( reset, Button); 
reset:X = 384; 
resetrY = 245; 
resetrTitle = Reset; 
resetfWidth = 192; 
resetiHeight = 38; 
reset:Visible = TRUE; 
reset:Action = reset;
Resetlmage ( reset );

j j /L  sje sjc sic sje sje sje sje sje sje sje sje sjc sje sje sje sje sje sjc sjc sjc sje sje sic sje sjc sjc sje sje sjc ale sje sje sjc sjc sje sjc

**** INSTANCE: Bayblend.FR.1439
sjc sje sje sje sjc sje sje sje sje sje sje sje sje sje sjc sje sje sje sje s j :  9{c sje sje sje sje sjc sje sje sje sje sje sje sje sje sje sje s je ^

Makelnstance( BaybIend.FR.1439, material); 
Bayblend.FR. 1439:type = "ABS+PC Alloy"; 
Bayblend.FR. 1439:flexural_modulus = 360000; 
Bayblend.FR. 1439:elongation = 3.5;
Bayblend.FR. 1439:mu_plastic_plastic = .75; 
Bayblend.FR. 1439:mu_plastic_metal = .65; 
Bayblend.FR.1439:tensile_stress = 7700; 
Bayblend.FR. 1439:compressive_stress = 12600;

j  sjc sje sjc sje sje sje sje sje sje sje sjc sjc sje sjc sje s j: sje sje sje sjc sje sje sje sje 9{e sjc sjc sje sjc sje sje sje sje sje s j: sjc sjc

**** INSTANCE: Calibre.800.10
sje sje s je s je s je s je s jc s jc s je s je s je s je s je s je s je s jc s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s jc^

Makelnstance( Calibre.800.10, material);
Calibre.800.10:type = PC;
Calibre.800.10:flexural_modulus = 360000; 
Calibre.800.10:elongation = 6.5;
Calibre.800.10:mu_plastic_plastic = .55; 
Calibre.800.10:mu_plastic_metal = .45; 
Calibre.800.10:tensile_stress = 8700;
Calibre.800.10:compressive_stress = 14000;

J  sje sjc sje sje s je  sjc sje sje sje sjc sjc jjc  jjc  sje sje sje jjc  sje sje sje sje sje sje sje sje sje sjc sje sjc sje sje sjc sje sje sje sje sjc

sje sje sjc sjc INSTANCE: Magnum.3661
sje sje sje s j :  sje s{c sje sje sje sje sje sje sje sje sje sje sje sje sje sje sjc sje sje sje sje sje sje sje s j: sje sje sje sje sje sje sjc s je ^

Makelnstance( Magnum.3661, material); 
Magnum.3661:type = ABS; 
Magnum.3661:flexural_modulus = 340000; 
Magnum.3661 :elongation = 2.3;
Magnum.3661 :mu_plastic_plastic = .75; 
Magnum.3661 :mu_plastic_metal = .65; 
Magnum.3661 :tensile_stress = 5000;
Magnum.3661:compressive_stress = 8800;
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^************************************* 
**** INSTANCE: Pulse. 1725
sjc sjc j(c sjc sjc ajc sjc sjc sjc sjc sjc sjc sjc ijcsjc  sjc sjc sjc sjc sjc sjc nfe sjc sjc sjc ;jc  sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc j

Makelnstance( Pulse. 1725, material); 
Pulse.l725:type = "ABS+PC Alloy";
Pulse.1725:flexural_modul us = 400000;
Pulse. 1725:elongation = 4.0; 
Pulse.l725:mu_plastic_plastic = .75;
Pulse. 1725:mu_plastic_metal = .65;
Pulse. 1725:tensile_stress = 8400;
Pulse. 1725:compressive_stress= 11000;
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JJf sic sic Sic *  sjc sjc * * * *  sic sic *  ajc sic *  ajc ajc ajc *  *  ajc ajc a|c *  ajc ajc ajc ajc ajc ajc ajc ajc ajc ajc ajc afc ajc ajcajc ajc a|e ajc ajc ajc ajc sjcaje:ajc ajc ajc ajc afc ajc ajc ajcy

/** ALL RULES ARE SAVED BELOW **/
*  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  sje sjc sjc *  *  *  *  sje sjc *  *  *  *  *  *  *  sje *  sje *  *  *  *  *  *  * y  

J ^ l s|e 5(e s(e *  *  s(c ale sjc sje *  s|e  ajc afc ajc ajc afc a(e sje ale sjc afc *  %  ajc afc *  ale *  sje afc *  *  *  afc *  afc

**** RULE: ckdesign
afc *  afc afc :fc  afc afc afc afc afc sje afc sjc *  afc afc afc afc afc afc afc afc afc sic afc afc *  afc afc sje afc afc a»e a*e afc ale a fc^

MakeRule( ckdesign, 0,
desigmstrain < desigmallowstrain

And ( design:sepforce < cantilevensepforce Or cantilevenself_locking #= yes 
Or cantilevensepforce =  0 )

And ( designrmateforce < cantilevenmateforce Or cantilevenmateforce =  0 ) 
And designrlength <= cantilever.maxlength, 

design:criteria = good 
);

SetRulePriority( ckdesign, 12 );

^ a f c  afc afc afc afc afc afc afc afc afc afc afc afc afc afc sje afc afc afc afc afc afc afc sje aft afc afc afc sfc 5*: afc afe sjc ajc afc afc afc

**** RULE: ckstxain
afcafcafc jfcafcafcafcafcafcafcpfcafcafcafcafcafcafcafcafcafcafcafcafcafcafcafcafcafcsfcafcafcafcjfcafcafcafcajy

MakeRule( ckstrain, [],
design:strain > design :allowstrain,
{
cantilevenundercut = cantilever:undercut /1.1;
SendMessage( cantilever, calculate);
});

SetRulePriority( ckstrain, 10 );

❖ % % ❖ ❖ ❖ ̂  ❖ * =*= ❖ ̂  # H5 ❖ * * ❖ H*+* * * H6 ’i' ’i' * + H6 ̂  ̂  ^
**** RULE: ckstrain2
afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc a j y

MakeRule( ckstrain2, [],
design:strain > design:allowstrain,
{
cantilevenlength = cantilever:!ength *1.1;
SendMessage( cantilever, calculate);
});

SetRulePriority( ckstrain2,5 );

^ a f c  afc 3*s afc afc afc afc afc afc afc afc afc afc sjc sje afc afc afc sje s it sje afc afc afc afc %  afc afc afc afc afc afc afc sje afc afc sjc

**** RULE: ckmateforce
afc afc afc jjc  afc afc afc afc afc afc sjc afc %  sje sjc sje afc afc aSc afc sjc s«e >je jjc sjc jjc  sjc sic % ij

MakeRule( ckmateforce, 0,
cantilevenmateforce != 0 And design:mateforce > cantilevenmateforce,
{
cantilevenlength = cantilevenlength *1.1;
SendMessage( cantilever, calculate );
});

SetRulePriorityC ckmateforce, 10);
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ajc ajc aje sje s{c sjc sje ajc sjc aje aje aje aje sjc ajc aje sje sje sje sje >je sRH« afc *?e £  *je H6 *R ̂  ̂  %

**** RULE: ckmateforce2
aje aje afc a): sjc sjc aje aje aje sjc sje ajc aje sjc aje aje sje sfs aje aje 3je ajc aje aje sje aje sje aje %  sje sje aje sje aje sjc ale a jc ^

MakeRule( ckmateforce2, □,
cantilevenmateforce != 0 And design:mateforce > cantilevenmateforce,
{
cantilever.Iead_angle = cantilevenlead_angle /  1.1;
SenaMessageC cantilever, calculate);
});

SetRulePriorityC ckmateforce2,5);

^  aje aje aje aje ajc aje aje aje ajc aje ale afc aje a}e aje ajc sje aje aje afc *  aje aje aje aje ajc ajc aje aje aje aje aje aje aje aje sje afc

**** RULE: cksepforce
ajc ajc ajc ajc ajc ale ajc sjc ajc ajc ajc ajc ajc ajc afc aje sic ale ajc ajc afc aje sjc ajc ajc afc ajc ajc afc ajc ajc sjc ajc ajc ajc ajc j

MakeRule( cksepforce, [],
cantilevensepforce != 0  And cantilever:self_locking #= no 

And design:sepforce >  cantilever:sepforce,
{
cantilevenlength = cantilevenlength * 1.1;
SendMessage( cantilever, calculate);
});

SetRulePriorityC cksepforce, 10);

^ a je  ajc aje aje aje aje sje aje aje sje aje aje aje aje ajc sjc aje sjc sje sje aje ajc aje aje aje aje aje aje sje aje aje sje ajc aje aje aje aje

**** r u LE: cksepforce2
aje aje aje aje ajc aje ajc aje ajc a jt aje aje sje ajc ajc aje ajc aje ajc ajc ajc ajc aje ajc ajc sje aje aje aje aje aje ajc aje aje ajc aje a je ^

MakeRule( cksepforce2, [],
cantilevensepforce != 0 And cantilever:self_locking #= no 

And design:sepforce > cantilever:sepforce,
{
cantilever:retum_angle = cantilever:retum_angle /  1.1;
SendMessage( cantilever, calculate);
});

SetRulePriorityC cksepforce2,5);

^ a je  aje aje aje aje aje aje ajc aje ajc ajc ajc ajc aje ajc aje aje aje aje aje aje ajc aje ajc aje aje aje aje aje a|e aje aje aje aje a|e  ajc a|e

**** RULE: cklength
ajea jea jeajeajca jea jea jea jea jea jea jea jesjca jca jea jca jea jea jea jea jea jesjea jea jca jea jea jea jea jea je sjea jea jea jea le^

MakeRule( cklength, □,
NotC Null?C cantilevenmaxlength ) ) And cantilevenlength 

> cantilevenmaxlength,
{
cantilevenlength = cantilevenmaxlength;
SendMessage( cantilever, calculate );
DeactivateRule( cktensile_stress );
DeactivateRule( ckcompressive_stress);
DeactivateRule( ckmateforce);
DeactivateRule( cksepforce);
DeactivateRule( ckstrain2);
});

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

J$t aje s{e sje sje sje sje sjc sje sje sjc sje sje sjesjesje sje sje *  sje sje sjc sje sje sje ajc >je % *  sj< H6 *  *  *  *  *  Jje

**** RULE: cktensile
sje sje sje aje sjc sje jjc  sje sje sje afc ajc sje sje sje sje sje sje sje sje sje %  sje sje sje sjc sje j*c sje sje sje sjc jjc  sjc ajc sjc s je ^

MakeRule( cktensile, □,
design:tensile_stress > cantilever:material_type:tensile_stress 

And cantilever:self_locking #= no,
{
cantiiever:retum_angie = cantilever:retum_angle /1.1;
SendMessage( cantilever, calculate);
});

SetRulePriorityC cktensile, 10);
^ s j c  sje sje sje sje sje sje aje sje sje sje sje s^e sje sje sje sje sjc sje sje sje sje sje sje sje sje sjc ajc sje sje sjc sje sjc sje sje sje sje

**** RULE: ckcompressive
sje ijc  *  sje *  *  sje *  *  sjc *  sje *  sje sje *  :je  *  *  *  *  ate sic *  sjc *  *  *  *  sje *  *  sje sje sje *  s je ^

MakeRule( ckcompressive, □,
design:compressive_stress > cantilever:material_type:compressive_stress, 
{
cantilever:lead_angle = cantilever:lead_angle /1.1;
SendMessage( cantilever, calculate);
});

SetRulePriorityC ckcompressive, 5);
j  sje sje s|c sje sjc sje sje sje sje sje sje sje sje jjc  sje sje sje ajc sje 9$c sje sje sje sje sje sje sjc sje sje sje sje sje sjc sje sjc sjc

**** RULE: cktensile_stress
sjc sjc sje sje sje sje sje sje sje sje sje sje sjc sjc sje sje sje sje sje sje sje sje sje sje sjc s j: sje sje sje sje aje sje sje sje sje sje s jc ^

MakeRuleC cktensile_stress, [],
design:tensile_stress > cantilever:material_type:tensile_stress 

And cantilevenselfjocking #= no,
{
cantilevenlength = cantilevenlength *1.1;
SendMessageC cantilever, calculate);

SetRulePriorityC cktensile_stress, 5 );
jj y sje sjc sje sje s je s jc s fe s je s je s jc s je s jc s je s je s je s je s jc s^ s je s je s jc s jc s jc s je s jc s je s je s je s je s je s je s je s jc s je s ie s je s je

j **** RULE: ckcompressive_stress
g  sje sjc sjc sje sje sje sje sje sjc sje sje sje sje sje sje sje sje 3je sje sje sje sje sje sje sje sje sje sje sje sje sje sjc sje sje sje s je s je y

| MakeRuleC ckcompressive_stress, [],
\ design:compressive_stress > cantilever:material_type:compressive_stress,
3 <| cantilevenlength = cantilevenlength * 1.1;
s SendMessageC cantilever, calculate);

});
s SetRulePriorityC ckcompressive_stress, 10);

^ s j e  sje sjc sje sje sjc sjc sje sjc sje sjc s j: sjc sje sje sjc sje s j: sje sje sje sje aje sje sje sje sje sje sjc sje sje sje sje sje sje sjc sje

RULE: smallest_lead_anglesjc sjc sje sjc

sje sje sje sjc sje sjc sje %  sje sje sjc jjc  sje sjc sje sje sje sjc aje sje sje sje sje sje sje s>c jje  jje  j}s sjc s|« /

MakeRuleC smallest_lead_angle, [], 
cantilever:lead_angle <10,
{
cantilever:lead_angle = 10;
PostMessage( "Lead angle must be at least 10 deg");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

SendMessageC cantilever, calculate);
});

SetRulePriorityC smallest_lead_angle, 20 );
y*************************************
**** RULE: largest_lead_angle
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

MakeRuleC largest_Iead_angle, 0 , 
cantilevenlead_angle > 35,
{
cantilever.lead_angle = 35;
PostMessageC "Lead angle must be less than 35 deg");
SendMessageC cantilever, calculate);
});

SetRulePriorityC largest_lead_angle, 20);
j  sje *  ajc *  sje *  sje sjc sje *  jje ajc sjc sjc *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  %  *  sje *  sjc

**** RULE: ckretum_angle 
*************************************^

MakeRuleC ckretum_angle, Q, 
cantilever:retum_angle < cantilever:lead_angle,
{
cantilever:retum_angle = cantilevenlead_angle;
PostMessageC "Return angle must not be smaller than lead angle" ); 
SendMessageC cantilever, calculate);
});

SetRulePriorityC ckretum_angle, 15);
j  *  sje *  *  *  *  *  *  *  *  sje afc *  *  *  *  *  *  *  *  *  *  *  *  *  *  ^  ^  ^  ^  *  £  *  *  *  £  *

**** RULE: ckself_locking
afc a>e *  *  *  *  *  *  *  *  %  *  *  *  *  sjc sje sje *  *  *  *  sjc *  a*c *  *  *  *  *  sje *  %  *  sje *  * ^

MakeRuleC ckself_locking, [],
cantilever:self_locking #= yes And cantilever:retum_angle < GlobaLangle, 
{
cantilever:retum_angle =  Global:angle;
PostMessageC "Return angle set to minimum allowable");
DeactivateRule( ckself_locking);
DeactivateRule( cknotselfjocking);
});

SetRulePriorityC ckselfjocking, 20 );

**** RULE: cknotself_locking
*  *  *  *  *  *  *  jje  *  *  sje *  sje sic sjc sje sjc *  *  *  sje *  sic *  sje *  *  jje sjc sjc sjc sjc *  *  jjc  sje * y

MakeRuleC cknotself_locking, [], 
cantilevenselfjocking #= no And cantilever:retum_angle > Global:angle, 
{
PostMessageC "Return angle must be smaller"); 
cantilever:retum_angle =  45;
SendMessageC cantilever, calculate);
DeactivateRule( ckselfjocking);
DeactivateRule( cknotselfjocking);
} ) ;

SetRulePriorityC cknotselfjocking, 20);
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J  *  ajc * *  Sit *  *  * s j c  jjc s i c *  3|c *  sjc H e * * * *  * * * * * * * *  s i s * * * * *  * * * * * * * * * * * * * * * *  sic ajc s i t * * *  * y

/** ALL GOALS ARE SAVED BELOW **/

y *  *  *  *  *  sjc *  *  *  *  *  sje *  *  *  *  *  sje *  *  *  *  *  *  *  *  *  sjc *  *  *  * * * * * *

**** GOAL: gooddesign
* * * * * > C * > C > < * * > < * * * * * * * * * * * * * * * * * * * * * * * * * y

MakeGoal( gooddesign, 
designrcriteria #= good);

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

/** ALL FUNCTIONS ARE SAVED BELOW **/
y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
**** FUNCTION: Start
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y  

MakeFunction( init, □,
{
SetWindowBackground( SESSION, 0 ,0 ,  100 );
RemoveWindowMenu( SESSION);
MaximizeWindow( SESSION );
FreezeWindow( SESSION); 
resetO;
});

yT*:* * * * * *  * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * *

**** FUNCTION: config
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

MakeFunction( config, [],
{
SendMessageC Globakfeature, init);
SendMessageC Global:feature, output_config);
ClearTranscriptImage( output_soln);
});

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

**** FUNCTION: change_geometry
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

MakeFunction( change_geometry, [],
{
SendMessageC Globakfeature, change_geometry);
SendMessageC Global:feature, output_config );
ClearTranscriptlmageC output_soln);
});

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

FUNCTION: select
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

MakeFunction( select, □,
{
ClearTranscriptlmageC output_mat);
SendMessageC material, select);
If Not( Global:feature:materiaI_type #= "NEW MATERIAL DATABASE" ) 

Then SendMessage (material, output_mat)
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Else {
SendMessage (material, select); 
SendMessage (material, outout_mat);

}; 
});

^ ^ s < > c ^ > « { > c > < 3 < > < s < s jc 5 i c 5 < a < > c « > c j l c s < s < s < 5 ic > c 3 ic > « > c j !c > c s jc 5 l c : i c : 'c j !6 s j c > jc 5 lc s lc

**** FUNCTION: process
sjc sjc jjc  s*c jjc  i^c sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc j

MakeFunction( process, []>
{
PostBusy( O N );
ClearTranscriptlmageC output_config); 
ClearTranscriptlmageC output_soln); 
SendMessage( Global:feature, calculate); 
designrcriteria = NULL;
Assert( cantilever:lead_angle);
AssertC cantilever:retum_angle);
AssertC cantilever:self_locking);
AssertC cantilevenmateforce);
AssertC design:strain);
SetForwardChainMode( BESTFIRST); 
ForwardChain( gooddesign, Global:RuleSet); 
SendMessage( Globalrfeature, output_config ); 
SendMessageC Globalrfeature, output_soln); 
write_feadata( );
PostBusy( OFF);
});

y s jc s jc s jc s je s jc s j e s j c ^ c s jc s jc ^ c ^ c s ic ^ c s jc s jc s jc ^ c s jc s je s j c s jc ^ c s je s ^ ^ c ^ s j e s je ^ c ^ c s jc ^ e ^ c ^ c s je s jc

**** FUNCTION: reset
s je s tG s je s jc s jc sJcs je s jc s je s jc s je s je s jc s jc s jc s jc s jc s je s je s jc s je s jc s jc s ic s je s je s jc s jc s je s je s je s je s jc s jG s jc s jo je ^

MakeFunctior/ reset n 
 V*~*

Hidelmage( Bitmapl);
HidelmageC configuration );
HidelmageC geometry);
Hidelmage( select_material);
Hidelmage( process);
Hidelmage( reset);
HidelmageC stop);
HidelmageC T extl);
HidelmageC Text2);
HidelmageC Text3);
HidelmageC Text4);
HidelmageC output_config);
Hidelmage( output_mat);
HidelmageC output_soln);
ShowImage( dep_button);
ShowImageC proj_button);
ShowImage( NW_button );
});
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^s je  sje sje sje sje sje ate sjc sje sje sje sje sjc s|e sjc sje sje sje sje sje sje sie sjc sje sle sje sje sje sje s*c sje alt sje sje sje sjc sje

FUNCTION: stop
sje sje afc *  sjc sje sjc sje sje sje sje sje sje sje sje sje sje sje sje sje sje sjc sje s j:  sje sjc sje :je sje sje sje sje sje sje sje sje s je ^

MakeFunction( stop, [],
Exit( ));

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

**** FUNCTION: projections
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

MakeFunction( projections, 0,
{
ShowImage( sj Jsutton);
ShowImage( ribsjsutton);
});

j  s$t sje sjc sje sje sjc sje sje sje sje sje sje sje sje sje sje sje sje sje sje sfc sje sje sje sje sje sje sje sjc sje sjc sjc sje sje sje sje sje

**** FUNCTION: snap Joints
sjc sjc s}c sjc s|c  sjc sjc sje sje sjc sje sjc sjc sjc sjc sjc sjc sjc sjc s}t sjc sjc sjc sje sje sjc sje sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc j

MakeFunction( snapjoints, [],
{
ShowImage( cant_button);
ShowImage( torjsutton );
ShowImage( ann_button);
});

^ s j e  *  ajc sjc sje sjc sje sje s|e sjc sje sje sjc sje sje sle sje sic sje sje sje sje sje sje sjc sjc sje sjc sjc ajc sjc s}c sje sje sje sic

**** FUNCTION: start_cant
sjc sje sje sjc sje sjc sjc sje sje sje sje sje sje sjc sje sjc sje sje sje sje sjc sjc sje s«e sje s £  sje sje sjc sjc sjc sje sje sjc sjc sjc s je ^

MakeFunction( start_cant, Q,
{
GIobal:feature = cantilever;
Text4:Title = "Snap Joint Demonstration";
Bitmapl :FileName = snconst.bmp;
Textl:Titie = "Snap Joint Configuration";
SetValue( GlobakRuleSet, ckstrain, cktensile_stress, ckcompressive_stress, 

ckdesign, cktensile, ckcompressive, smallest_lead_angle, 
largest_lead_angle, ckretum_angle, ckselfjocking, 
cknotselfjocking, ckmateforce, ckmateforce2, cksepforce, 
cksepforce2, ckstrain2, cklength );

Hidelmage( NWJmtton);
Hidelmage( proj Jsutton);
HidelmageC dep_button);
HidelmageC sj_button);

| HidelmageC ribsjmtton);
* HidelmageC cantjmtton);
j HidelmageC torjsutton);
1 HidelmageC ann_button);
3 ClearTranscriptlmageC output_config);
| ClearTranscriptlmageC output_mat);
2 ClearTranscriptlmageC output_soln);
|  ShowImage(Text4);
; ShowImage( Bitmapl);
% ShowImage( configuration);
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ShowImage( geometry); 
ShowImage( select_material); 
ShowImage( process); 
ShowImage( reset); 
ShowImage( stop ); 
ShowImage( T extl); 
ShowImage( Text2); 
ShowImage( Text3); 
ShowImage( Text4); 
ShowImage( output_config); 
ShowImage( output_mat); 
ShowImage( output_soln); 
});

**** FUNCTION: write_feadata
sJesJeaJesJes^siesie sJesJes jesiesJesJesie siesJesJesJesJesfcsie sie sfc sJcsiesJesiesie sie sie sie s^sJesJesJesJesie^

MakeFunction( write_feadata, Q,
{
OpenWriteFile( feadata.txt);
WriteLine( "K: /CO U 1 snapjoint" );
WriteLine( ”Kcantileverrlength, cantileverrvvidth, cantileventhickness, 

cantilevenundercut, cantilever:lead_angle, cantilever:retum_angle ); 
WriteLine( "K: PR E");
WriteLine( "E: **** END OF SESSION ****");
CloseWriteFile( );
Execute( "dos2aix", "feadata.txt", "feadata.prg");
});

J% l sje *  sje sje sje a t: sle sle sle sle sjc sje sje sje sje sje s|e sje sje sje ate sje sje aje sje sje sje sje 3jc 5je sje sje sjc sje sje sje

**** FUNCTION: loaddb
s jc s je i je s je s j is jc s je jjc s je s je a jc s jc s je s je s le s jc s jc s je s je s je s je s je s jc s jc ije s jc a je ije s je s je s je s jc s je s je i^ ii je s je ^

MakeFunction( loaddb, [],
{
Execute (“createdb.bat”);
ForAlI [ xlmaterial ]

Deletelnstance( x );
DBOpenFile( material.dbf);
DBGetFieldNames( Global:fieldnames );
RemoveFromList( Global:fieldnames, NAM E);
GetSlotList( material, Global:slotnames);
DBSetMapParameters( Global:slotnames, Global:fieldnames); 

j Globahnum = DBGetNumberOfRows( );
I For x [ 1 Globaknum ]

{
GIobal:instance = DBReadCell( x, 1);
Makelnstance( Global:instance, material);
DBMapRowToInstance( Global:instance);
If ( Global:instance:tensile_stress =  0 Or Global:instance:elongation =  0 

Or Global:instance:flexural_modulus =  0 
Or Global:instance:compressive_stress =  0 
Or Global:instance:mu_plastic_plastic =  0 
Or Global:instance:mu_plastic_metal =  0 )
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Then PostInputForm( "Enter Missing Material Properties for "
#  Globalrinstance, Globalrinstancerflag, "Delete from material selection list?", 
Global:instance:tensile_stress, "Tensile Stress @ yield", 
Global:instance:elongation, "Elongation @ yield", 
Global:instance:flexural_modulus, "Flexural Modulus", 
Global:instance:compressive_stress, "Compressive Stress @ yield”, 
Global:instance:mu_plastic_plastic, "Coef of Friction (plas/plas)", 
Global:instance:mu_plastic_metal, "Coef of Friction (plas/metal)” );

If ( Not( Null?( Global:instance:flag) )  And Global:instance:flag #= yes )
Then Deletelnstance( Globalrinstance);

};
DBCloseFile( materiaLdbf);
});

**** FUNCTION: setup_graphics
aje sje sje 3*e a*e s*c sje afc sje sje sje sjc a*e sjc s*e sjc sjc afe a*e ^Jc ajc a*e sjc a*' a*c sjc 3*e sje ale aje afc aje sic a*c^

MakeFunction( setup_graphics, [],
{
Globahxscreen = GetScreenWidth( ); 
Globalryscreen = GetScreenHeight( ); 
ButtomWidth = .30 * Globahxscreen; 
Button:Height = .05 * Globalryscreen; 
BitmaprWidth = .30 * Globahxscreen; 
BitmaprHeight = .25 * Globalryscreen; 
TranscriptrWidth = .30 * Globahxscreen; 
TranscriptrHeight = .35 * Globalryscreen;
Text:Width = .30 * Globahxscreen;
TextrHeight = ButtonrHeight;
ButtonrX = 2 * BitmaprWidth; 
configurationrY = ButtonrHeight * 2; 
geometry:Y = ButtonrHeight * 3.1; 
select_material:Y = ButtonrHeight * 4.2; 
processrY = ButtonrHeight * 5.3; 
resetrY = ButtonrHeight * 6.4; 
stoprY = ButtonrHeight * 7.5;
Bitmap T.X = BitmaprWidth /  2;
BitmaplrY = ButtonrHeight * 3;
TextlrX = Globahxscreen /  50;
TextlrY = ButtonrHeight * 9;
Text2:X = TextlrX * 2  + TextrWidth;
Text2:Y = ButtonrHeight * 9;
Text3:X = TextlrX * 3 + TextrWidth * 2;
Text3:Y = ButtonrHeight * 9;
Text4:X = BitmaprWidth / 2;
Text4:Y = ButtonrHeight * 2; 
output_config:X = TextlrX; 
output_config:Y = ButtonrHeight * 10; 
output_mat:X = Text2:X; 
output_matrY = ButtonrHeight * 10; 
output_soln:X = Text3rX; 
output_soln:Y = ButtonrHeight * 10; 
NW_button:Width = ButtonrWidth /  2;
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NW_button:X = ButtonrWidth /  2;
NW_button:Y = Globalryscreen /  2 - ButtonrHeight * 2; 
proj_buttonr Width = ButtonrWidth / 2; 
proj_buttonrX = ButtonrWidth /  2; 
proj_button.*Y = Globalryscreen 1 2; 
dep_button:Width = ButtonrWidth /  2; 
dep_button:X = ButtonrWidth /  2; 
dep_buttonrY = Globalryscreen /  2 + ButtonrHeight * 2; 
sj_buttonrWidth = ButtonrWidth /  2; 
sj_buttonrX = ButtonrWidth * 1.25; 
sj_button:Y = proj_buttonrY - ButtonrHeight /  2; 
ribs_buttonrWidth = ButtonrWidth /  2; 
ribs_button:X = ButtonrWidth * 1.25; 
ribs_buttonrY = proj_buttonrY + ButtonrHeight; 
cant_button:Width = ButtonrWidth /  2; 
cant_buttonrX = ButtonrWidth * 2; 
cant_buttonrY = proj_buttonrY - ButtonrHeight * 1.5; 
tor_buttonr Width = ButtonrWidth /  2; 
tor_button:X = ButtonrWidth * 2; 
tor_buttonrY = proj_buttonrY; 
ann_buttonrWidth = ButtonrWidth /  2; 
ann_buttonrX = ButtonrWidth * 2; 
ann_button:Y = proj_button:Y + ButtonrHeight * 1.5; 
});

i
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APPENDIX B 

RULE TRACE EXAMPLES

TRACE: CONFLICT RESOLUTION / BEST FIRST

:ilevv*/a/37«£_
' '  ckrm tvr*

itifow.
'•c x a o isa  
•ckdm sig  
c k io a s ti 

itilevv- e k se p fo  
*-;• ckta a sH  

‘• d x a p fo  
>c*dmsig
\c k s trm a —  cantilov

itilov --c k /a n g t 
,c k d * s i$

u d tstra in —contilev
itilavr—cktoagb

e5i9K?*. /  I
c * su  ^  . ? '  *

'design:r.
'c fe ftsu i—centilov—-ofc/if/»OT>C , . /  • e k tfn ig

^dotign:«<, •

iC a n ti l® v *

.  .  r c a n t i l w^d o c ig n :r . /
'•c J ts tra m ^  . . .. ck ffestQd̂esign:*.'cfotfaa

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 75.
Asserting: cantilever:self_locking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE 

Evaluating: cantilever.lead_angle 
Relevant rules: 

small est_lead_angle largestJead_angle ckretum_angle 
Testing Rule: smallest_Ieau_angle FALSE 
Testing Rule: largestjead_angle FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilever.retum_angle 

Relevant rules: 
ckselfjocking cknotselfjocking ckretum_angle 

Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotselfjocking FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilevenselfjocking 

Relevant rules:
ckselfjocking cknotselfjocking ckdesign cktensile cksepforce cktensile_stress

r*VQPr>f"nrc'p<7
Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotselfjocking FALSE

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

106

Testing Rule: ckdesign FALSE 
Testing Rule: cktensile FALSE 
Testing Rule: cksepforce FALSE 
Testing Rule: cktensile_stress FALSE 
Testing Rule: cksepforce2 FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.108000. 
design:strain is set to 0.044223. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 62.437463. 
design:sepforce is set to -124.921366. 
design:tensile_stress is set to -1998.741856. 
design:compressive_stress is set to 998.999408. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.742500. 
design:strain is set to 0.036548. 
design:ailowstrain is set to 0.027300. 
design:raateforce is set to 46.910274. 
design:sepforce is set to -93.855440. 
design:tensile_stress is set to -1501.687040. 
design:compressive_stress is set to 750.564384. 

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.098182. 
design:strain is set to 0.033227. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 42.647684. 
design:sepforce is set to -85.327090. 
design:tensile_stress is set to -1365.233440. 
design:compressive_stress is set to 682.362944. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.816750. 
design:strain is set to 0.027460. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 32.041453. 
design:sepforce is set to -64.106737. 
design:tensile_stress is set to -1025.707792. 
design:compressive_stress is set to 512.663248. 

Evaluating: cantilevenlength 
Relevant rules:
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cklength 
Testing Rule: cklength TRUE 

cantilevenlength is set to .75. 
design:strain is set to 0.032565. 
designrallowstrain is set to 0.027300. 
designrmateforce is set to 41.380015. 
design:sepforce is set to -82.790807. 
design:tensile_stress is set to -1324.652912. 
design:compressive_stress is set to 662.080240. 
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress. 
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.089256. 
design:strain is set to 0.029604. 
design:ailowstrain is set to 0.027300. 
design:mateforce is set to 37.617501. 
design:sepforce is set to -75.262982. 
design:tensile_stress is set to -1204.207712. 
design:compressive_stress is set to 601.880016. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain

P d l o t n n l -  m l a c *
A W 1 W  * ( u i w  & U A W a> >

ckdesign ckstrain 
Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.081142. 
design:strain is set to 0.026914. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 34.199344. 
design:sepforce is set to -68.424126. 
design:tensile_stress is set to -1094.786016. 
design:compressive_stress is set to 547.189504. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: aesigmstrain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign TRUE 
designxriteria is set to good.

Done forwardChaining.
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Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 75.
Asserting: cantilevenselfjocking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BREADTHFIRST IGNORE 

Evaluating: cantilever.lead_angle 
Relevant rules: 

sm allest_lead_angle largestjead_ande ckretum_angle 
lesting Rule: smallest_lead_angle FALSE 
Testing Rule: largestJead_angle FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilevenretum_angle 

Relevant rules: 
ckself_locking cknotselfjocking ckretum_angle 

Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotselfjocking FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilevenselfjocking 

Relevant rules:
ckselfjocking cknotselfjocking ckdesign cktensile cksepforce cktensile_stress 

cksepforce2
Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotselfjocking FALSE 
Testing Rule: ckdesign FALSE 
Testing Rule: cktensile FALSE 
Testing Rule: cksepforce FALSE 
Testing Rule: cktensiie_stress FALSE 
Testing Rule: cksepforce2 FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.108000.
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designrstrain is set to 0.044223. 
designrallowstrain is set to 0.027300. 
designrmateforce is set to 62.437463. 
design:sepforce is set to -124.921366. 
design:tensile_stress is set to -1998.741856. 
design:compressive_stress is set to 998.999408. 

Testing Rule: ckstrain2 TRUE 
cantilevenlength is set to 0.742500. 
designrstrain is set to 0.036548. 
designrallowstrain is set to 0.027300. 
designrmateforce is set to 46.910274. 
designrsepforce is set to -93.855440. 
design:tensile_stress is set to -1501.687040. 
designrcompressive_stress is set to 750.564384. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Evaluating: cantilevenlength 

Relevant rules: 
cklength 

Testing Rule: cklength FALSE 
Evaluating: designrstrain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.098182. 
designrstrain is set to 0.033227. 
designrallowstrain is set to 0.027300. 
designrmateforce is set to 42.647684. 
designrsepforce is set to -85.327090. 
design:tensile_stress is set to -1365.233440. 
design:compressive_stress is set to 682.362944. 

Testing Rule: ckstrain2 TRUE 
cantilevenlength is set to 0.816750. 
designrstrain is set to 0.027460. 
designrallowstrain is set to 0.027300. 
designrmateforce is set to 32.041453. 
designrsepforce is set to -64.106737. 
design:tensile_stress is set to -1025.707792. 
design:compressive_stress is set to 512.663248. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: cantilevenlength 

Relevant rules: 
cklength 

Testing Rule: cklength TRUE 
cantilevenlength is set to .75. 
designrstrain is set to 0.032565. 
designrallowstrain is set to 0.027300. 
designrmateforce is set to 41.380015. 
designrsepforce is set to -82.790807. 
design:tensile_stress is set to -1324.652912. 
design:compressive_stress is set to 662.080240. 
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
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Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.089256. 
design:strain is set to 0.029604. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 37.617501. 
design:sepforce is set to -75.262982. 
design:tensile_stress is set to -1204.207712. 
design:compressive_stress is set to 601.880016. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.081142. 
design:strain is set to 0.026914. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 34.199344. 
design:sepforce is set to -68.424126. 
design:tensile_stress is set to -1094.786016. 
design:compressive_stress is set to 547.189504. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign TRUn 
design:criteria is set to good.

Testing Rule: ckstrain FALSE 
Done iorwardChaining.
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Asserting: cantilever:lead_angle as 35.
Asserting: cantilevenretum_angle as 75.
Asserting: cantilevenselfjocking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: DEPTHFIRST IGNORE 

Evaluating: cantilevenlead_angle 
Relevant rules: 

smallestjead_angle largestJead_angle ckretum_angle 
Testing Rule: smallest Jead_angle FALSE 
Testing Rule: largest Jead_angle FALSE 
Testing Rule: ckretum_angle fALSE 
Evaluating: cantilevenretum_angle 

Relevant rules: 
ckselfjocking cknotselfjocking ckretum_angle 

Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotselfjocking FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilever:selfJocking 

Relevant rules:
ckselfjocking cknotselfjocking ckdesign cktensile cksepforce cktensile_stress 

cksepforce2
Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotselfjocking FALSE 
Testing Rule: ckdesign FALSE 
Testing Rule: cktensile FALSE 
Testing Rule: cksepforce FALSE 
Testing Rule: cktehsile_stress FALSE 
Testing Rule: cksepforce2 FALSE 
Evaluating: desigmstrain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.108000.
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designrstrain is set to 0.044223. 
designrallowstrain is  set to 0.027300. 
designrmateforce is set to 62.437463. 
designrsepforce is set to -124.921366. 
design:tensile_stress is set to -1998.741856. 
designrcompressive_stress is set to 998.999408. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.742500. 
designrstrain is set to 0.036548. 
designrallowstrain is set to 0.027300. 
designrmateforce is set to 46.910274. 
designrsepforce is set to -93.855440. 
design:tensile_stress is set to -1501.687040. 
design:compressive_stress is set to 750.564384. 

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: designrstrain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Ruler ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.098182. 
designrstrain is set to 0.033227. 
designrallowstrain is set to 0.027300. 
designrmateforce is set to 42.647684. 
designrsepforce is set to -85.327090. 
design:tensile_stress is set to -1365.233440. 
design:compressive_stress is set to 682.362944. 

Evaluating: cantilevenundercut
■polAvprit nilAC*

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.816750. 
designrstrain is set to 0.027460. 
designrallowstrain is set to 0.027300. 
designrmateforce is set to 32.041453. 
designrsepforce is set to -64.106737. 
design:tensile_stress is set to -1025.707792. 
design:compressive_stress is set to 512.663248. 

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength TRUE 

cantilevenlength is set to .75. 
designrstrain is set to 0.032565. 
designrallowstrain is set to 0.027300. 
designrmateforce is set to 41.380015. 
designrsepforce is set to -82.790807. 
design:tensile_stress is set to -1324.652912. 
design:compressive_stress is set to 662.080240. 
Deactivating Rule: cktensile_stress.
Deactivating Ruler ckcompressive_stress.
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Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.089256. 
design:strain is set to 0.029604. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 37.617501. 
design:sepforce is set to -75.262982. 
design:tensile_stress is set to -1204.207712. 
design:compressive_stress is set to 601.880016. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.081142. 
design:strain is set to 0.026914. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 34.199344. 
design:sepforce is set to -68.424126. 
design:tensile_stress is set to -1094.786016. 
design:compressive_stress is set to 547.189504.

ijv tuuau iig . vcuiLij.ovui.uuuc/ivut.

Relevant rules:
NONE 

Evaluating: design:strain 
Relevant rales: 

ckdesign ckstrain 
Testing Rule: ckdesign TRUE 

designxriteria is set to good.
Done forwardChaining.
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Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 75.
Asserting: cantilevenselfjocking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: SELECTIVE IGNORE 

Evaluating: cantilevenlead_angle 
Relevant rules: 

smallest_lead_angle largestjead_angle ckretum_angle 
Testing Rule: smallest_leaa_angle FALSE 
Testing Rule: largest_lead_angle FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilevenretum_

Relevant rules: 
ckselfjocking cknotselfjocking ckretum_ar.gle 

Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotselfjocking FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilevenselfjocking 

Relevant rules:
ckselfjocking cknotselfjocking ckdesign cktensile cksepforce cktensile_stress 

cksepforce2
Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotselfjocking FALSE 
Testing Rule: ckdesign FALSE 
Testing Rule: cktensile FALSE 
Testing Rule: cksepforce FALSE 
Testing Rule: cktensile_stress FALSE 
Testing Rule: cksepforce2 FALSE 
Evaluating: design:strain 

Relevant rules:
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ckdesign ckstrain ckstrain2 
Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.108000. 
design:strain is set to 0.044223. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 62.437463. 
design:sepforce is set to -124.921366. 
design:tensile_stress is set to -1998.741856. 
design:compressive_stress is set to 998.999408. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.098182. 
design:strain is set to 0.040204. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 56.763125. 
design.-sepforce is set to -113.568472. 
design:tensile_stress is set to -1817.095552. 
design:compressive_stress is set to 908.210000. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.089256. 
design:strain is set to 0.036548. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 51.601302. 
design:sepforce is set to -103.240985. 
design:tensile_stress is set to -1651.855760. 
design:compressive_stress is set to 825.620832. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.081142. 
design:strain is set to 0.033227. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 46.912454. 
design:sepforce is set to -93.859800. 
design:tensile_stress is set to -1501.756800. 
design:compressive_stress is set to 750.599264. 

Evaluating: cantilevenundercut 
Relevant rules:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

116

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.073765. 
design:strain is set to 0.030207. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 42.648585. 
design:sepforce is set to -85.328893. 
design:tensile_stress is set to -1365.262288. 
design:compressive_stress is set to 682.377360. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.067059. 
design:strain is set to 0.027457. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 38.765922. 
design:sepforce is set to -77.560678. 
design:tensile_stress is set to -1240.970848. 
design:compressive_stress is set to 620.254752. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.060963. 
design:strain is set to 0.024961. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 35.241877. 
design:sepforce is set to -70.509966. 
design:tensile_stress is set to -1128.159456. 
design:compressive_stress is set to 563.870032. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign TRUE 
designxriteria is set to good.

Done torwardChaining.
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Asserting: cantilevenlead_angle as 35.
Asserting: cantilever:retum_angle as 50.
Asserting: cantilevenselfJocking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE 

Evaluating: cantilevenlead_angle 
Relevant rules: 

smallest_lead_angle largestJead_anjgle ckretum_angle 
Testing Rule: smallestJeaa_angle FALSE 
Testing Rule: largestjead_angle FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilevenretum_angle 

Relevant rules: 
ckselfjocking cknotselfJocking ckretum_angle 

Testing Rule: ckselfjocking TRUE 
cantilever:retum_angle is set to 61.189194.
Deactivating Rule: ckselfjocking.
Deactivating Rule: cknotself Jocking.

Evaluating: cantilever:selfJocking 
Relevant rules: 

ckdesign cktensile cksepforce cktensile_stress cksepforce2 
Testing Rule: ckretum_angle FALSE 
Testing Rule: ckdesign FALSE 
Testing Rule: cktensile FALSE 
Testing Rule: cksepforce FALSE 
Testing Rule: cktensile_stress FALSE 
Testing Rule: cksepforce2 FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.108000. 
design:strain is set to 0.044223.
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design:allowstrain is set to 0.027300. 
design:mateforce is set to 62.437463. 
design:sepforce is set to 24241016.666667. 
design:tensile_stress is set to 387856266.666672. 
design:compressive_stress is set to 998.999408. 

Evaluating: cantilevernetum_angle 
Relevant rules: 

ckretum_angle 
Testing Rule: ckreturn_angle FALSE 
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.742500. 
design:strain is set to 0.036548. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 46.910274. 
design:sepforce is set to 18212667.333333. 
design:tensile_stress is set to 291402677.333328. 
design:compressive_stress is set to 750.564384. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Evaluating: cantilevenlength 

Relevant rules: 
cklength 

Testing Rule: cklength FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.098182. 
design:strain is set to 0.033227. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 42.647684. 
design:sepforce is set to 16557739.333333. 
design:tensile_stress is set to 264923829.333328. 
design:compressive_stress is set to 682.362944. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.816750. 
design:strain is set to 0.027460. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 32.041453. 
design:sepforce is set to 12439925.666667. 
design:tensile_stress is set to 199038810.666672. 
design:compressive_stress is set to 512.663248. 

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength TRUE 

cantilevenlength is set to .75. 
design:strain is set to 0.032565. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 41.380015. 
design :sepforce is set to 16065573.
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design:tensile_stress is set to 257049168. 
design:compressive__stress is set to 662.080240. 
Deactivating Rule: cktensile_stiess.
Deactivating Rule: ckcompressive_stress. 
Deactivating Rule: ckraateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.089256. 
design:strain is set to 0.029604. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 37.617501. 
design:sepforce is set to 14604797. 
design:tensile_stress is set to 233676752. 
design:compressive_stress is set to 601.880016. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.081142. 
design:strain is set to 0.026914. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 34.199344. 
design:sepforce is set to 13277715.666667. 
design:tensile_stress is set to 212443450.666672. 
design:compressive_stress is set to 547.189504. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign TRUE 
designxriteria is set to good.

Done forwardChaining.
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Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 50.
Asserting: cantilever:self_lockmg as no.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE 

Evaluating: cantilevenlead_angle 
Relevant rules: 

smallest_lead_angle largest_lead_angle ckretum_angle 
Testing Rule: sma!lest_lead_ande FALSE 
Testing Rule: largest_lead_angie FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilevennetum_angle

ckself_locking cknotselfjocking ckretum_angle 
Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotself_locking FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilever:self_locking 

Relevant rules:
ckselfjocking cknotself_locking ckdesign cktensile cksepforce cktensile_stress 

ckseDforce2
Testing Rule: ckself_locking FALSE 
Testing Rule: cknotselfjocking FALSE 
Testing Rule: ckdesign FALSE 
Testing Rule: cktensile FALSE 
Testing Rule: cksepforce FALSE 
Testing Rule: cktensile_stress FALSE 
Testing Rule: cksepforce2 FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.108000. 
design:strain is set to 0.044223.
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designrallowstrain is set to 0.027300. 
designrmateforce is set to 62.437463. 
designrsepforce is set to 155.242146. 
design:tehsile_stress is set to 2483.874336. 
design:compressive_stress is set to 998.999408. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.742500. 
design:strain is set to 0.036548. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 46.910274. 
design:sepforce is set to 116.635931. 
design:tensile_stress is set to 1866.174896. 
design:compressive_stress is set to 750.564384. 

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.098182. 
design:strain is set to 0.033227. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 42.647684. 
design:sepforce is set to 106.037590. 
design:tensile_stress is set to 1696.601440. 
design:compressive_stress is set to 682.362944. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.816750. 
design:strain is set to 0.027460. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 32.041453. 
design:sepforce is set to 79.666656. 
design:tensile_stress is set to 1274.666496. 
design:compressive_stress is set to 512.663248. 

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength TRUE 

cantilevenlength is set to .75. 
design:strain is set to 0.032565. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 41.380015. 
design:sepforce is set to 102.885701. 
design:tensile_stress is set to 1646.171216. 
design:compressive_stress is set to 662.080240. 
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress. 
Deactivating Rule: ckmateforce.
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Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.089256. 
design:strain is set to 0.029604. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 37.617501. 
design:sepforce is set to 93.530731. 
design:tensile_stress is set to 1496.491696. 
design:compressive_stress is set to 601.880016. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.081142. 
design:strain is set to 0.026914. 
design:allowstrain is set to 0.027300. 
desigmmateforce is set to 34.199344. 
design:sepforce is set to 85.031956. 
design:tensile_stress is set to 1360.511296. 
design:compressive_stress is set to 547.189504. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign TRUE 
design:criteria is set to good.

Done forwardChaining.
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Asserting: cantilever:lead_angle as 50.
Asserting: cantilever:retum_angle as 50.
Asserting: cantilevenselfjocking as no.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE 

Evaluating: cantilevenlead_angle 
Relevant rules: 

smallest_lead_angle largestJead_angle ckretum_angle 
Testing Rule: smallestjead_angle FAL§E 
Testing Rule: largest_lead_angle TRUE 

cantilever:lead_angle is set to 35. 
desigmstrain is set to 0.048645. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 68.680781. 
design.-sepforce is set to 170.765296. 
design:tensile_stress is set to 2732.244736. 
design:compressive_stress is set to 1098.892496.

Evaluating: cantiievenretum_angie 
Relevant rules: 

ckselfjocking cknotself Jocking ckretum_angle 
Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotself Jocking FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilevenselfjocking 

Relevant rules:
ckselfjocking cknotself Jocking ckdesign cktensile cksepforce cktensile_stress 

cksepforce2
Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotself Jocking FALSE 
Testing Rule: ckdesign FALSE 
Testing Rule: cktensile FALSE 
Testing Rule: cksepforce FALSE 
Testing Rule: cktensile_stress FALSE 
Testing Rule: cksepforce2 FALSE
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Evaluating: cantilevenlead_angle 
Relevant rules: 

smallest_lead_angle largest_lead_angle ckretum_angle 
Testing Rule: smallest_lead_angle FALSE 
Testing Rule: largest_lead_angle FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.108000. 
design:strain is set to 0.044223. 
design:allowstrain is set to 0.027300. 
design:mateforce is set to 62.437463. 
design:sepforce is set to 155.242146. 
design:tensile_stress is set to 2483.874336. 
design:compressive_stress is set to 998.999408. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.742500. 
desigmstrain is set to 0.036548. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 46.910274. 
desigmsepforce is set to 116.635931. 
design:tensile_stress is set to 1866.174896. 
design:compressive_stress is set to 750.564384. 

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: desigmstrain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.098182. 
desigmstrain is set to 0.033227. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 42.647684. 
desigmsepforce is set to 106.037590. 
design:tensile_stress is set to 1696.601440. 
design:compressive_stress is set to 682.362944. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.816750. 
desigmstrain is set to 0.027460. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 32.041453. 
desigmsepforce is set to 79.666656. 
design:tensile_stress is set to 1274.666496. 
design:compressive_stress is set to 512.663248. 

Evaluating: cantilevenlength
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Relevant rules: 
cklength 

Testing Rule: cklength TRUE 
cantilevenlength is set to .75. 
desigmstrain is set to 0.032565. 
design:allowstrain is set to 0.027300. 
desigmmateforce is set to 41.380015. 
desigmsepforce is set to 102.885701. 
design:tensile_stress is set to 1646.171216. 
design:compressive_stress is set to 662.080240. 
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress. 
Deactivating Rule: ckmateiorce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.089256. 
design:strain is set to 0.029604. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 37.617501. 
desigmsepforce is set to 93.530731. 
design:tensile_stress is set to 1496.491696. 
design:compressive_stress is set to 601.880016. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
l_l V U lU U U l l ^ .

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.081142. 
desigmstrain is set to 0.026914. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 34.199344. 
desigmsepforce is set to 85.031956. 
design:tensile_stress is set to 1360.511296. 
design:compressive_stress is set to 547.189504. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: desigmstrain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign TRUE 
desigmcriteria is set to good.

Done torwardChaining.
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Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 75.
Asserting: cantilevenselfjocking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE 

Evaluating: cantilever.lead_angle 
Relevant rules: 

smallest_lead_angle largestJead_angle ckretum_angle 
Testing Rule: smallest_leaa_angle FALSE 
Testing Rule: largestJead_angle FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilevenretum_angle 

Relevant rules: 
ckselfjocking cknotself Jocking ckretum__angle 

Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotself Jocking FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilevenselfjocking 

Relevant rules:
ckselfjocking cknotself Jocking ckdesign cktensile cksepforce cktensile_stress 

cksepforce2
Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotself Jocking FALSE 
Testing Rule: ckdesign FALSE 
Testing Rule: cktensile FALSE 
Testing Rule: cksepforce FALSE 
Testing Rule: cktensile_stress FALSE 
Testing Rule: cksepforce2 FALSE
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Evaluating: design:strain 
Relevant rules: 

ckdesign ckstrain ckstrain2 
Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.108000. 
design:strain is set to 0.044223. 
design:allowstrain is set to 0.027300. 
desigmmateforce is set to 62.437463. 
design:sepforce is set to -124.921366. 
design:tensile_stress is set to -1998.741856. 
design:compressive_stress is set to 998.999408. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.742500. 
design:strain is set to 0.036548. 
design:allowstrain is set to 0.027300. 
desigmmateforce is set to 46.910274. 
design:sepforce is set to -93.855440. 
design:tensile_stress is set to -1501.687040. 
design:compressive_stress is set to 750.564384. 

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.098182. 
design:strain is set to 0.033227. 
desigmallowstrain is set to 0.027300. 
design:mateforce is set to 42.647684. 
design:sepforce is set to -85.327090. 
design:tensile_stress is set to -1365.233440. 
design:compressive_stress is set to 682.362944. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.816750. 
design:strain is set to 0.027460. 
design:allowstrain is set to 0.027300. 
desigmmateforce is set to 32.041453. 
desigmsepforce is set to -64.106737. 
design:tensile_stress is set to -1025.707792. 
design:compressive_stress is set to 512.663248. 

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength TRUE 

cantilevenlength is set to .75. 
desigmstrain is set to 0.032565. 
desigmallowstrain is set to 0.027300.
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design:mateforce is set to 41.380015. 
design:sepforce is set to -82.790807. 
design:tensile_stress is set to -1324.652912. 
design:compressive_stress is set to 662.080240. 
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress. 
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.089256. 
design:strain is set to 0.029604. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 37.617501. 
desigmsepforce is set to -75.262982. 
design:tensile_stress is set to -1204.207712. 
design:compressive_stress is set to 601.880016. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: desigmstrain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.081142. 
desigmstrain is set to 0 02.6914-. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 34.199344. 
desigmsepforce is set to -68.424126. 
design:tensile_stress is set to -1094.786016. 
design:compressive_stress is set to 547.189504. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: desigmstrain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain FALSE 
Evaluating: desigmallowstrain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain FALSE 
Evaluating: desigmmateforce 

Relevant rules: 
ckdesign ckmateforce2 

Testing Rule: ckdesign FALSE
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Testing Rule: ckmateforce2 TRUE 
cantilevenlead_ang3e is set to 31.818182. 
design:strain is set to 0.026914. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 29.886331. 
desigmsepforce is set to -68.424126. 
desigmtensile_stress is set to -1094.786016. 
design:compressive_stress is set to 478.181296. 

Evaluating: cantilever.lead_angle 
Relevant rules: 

smallest_lead_angle Iargest_Iead_angle ckretum_angle 
Testing Rule: smallest_lead_angle FALSE 
Testing Rule: largest_lead_angle FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

festing Rule: ckdesign TRUE 
desigmcriteria is set to good.

Done torwardChaining.
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Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 50.
Asserting: cantilevenselfjocking as no.
Asserting: desigmstrain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE
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Relevant rules: 
smallest_lead_angle largestJead_angle ckretum_angle 

Testing Rule: smaliest_leaa_angle FALSE 
Testing Rule: largestJead_angle FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilever.ietum_angle 

Relevant rules: 
ckselfjocking cknotself Jocking ckretum_angle 

Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotself Jocking FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: cantilevenselfjocking 

Relevant rules:
ckselfjocking cknotself Jocking ckdesign cktensile cksepforce cktensile_stress

r*1c,Qf*r>fnrfk<a9
Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotself Jocking FALSE 
Testing Rule: ckdesign FALSE 
Testing Rule: cktensile FALSE 
Testing Rule: cksepforce FALSE 
Testing Rule: cktensile_stress FALSE 
Testing Rule: cksepforce2 FALSE
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Evaluating: design:strain 
Relevant rules: 

ckdesign ckstrain ckstrain2 
testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.108000. 
design:strain is set to 0.044223. 
design:allovvstrain is set to 0.027300. 
desigmmateforce is set to 62.437463. 
desigmsepforce is set to 155.242146. 
design:tensile_stress is set to 2483.874336. 
design:compressive_stress is set to 998.999408. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.742500. 
desigmstrain is set to 0.036548. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 46.910274. 
desigmsepforce is set to 116.635931. 
design:tensile_stress is set to 1866.174896. 
design:compressive_stress is set to 750.564384. 

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: desigmstrain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.098182. 
desigmstrain is set to 0.033227. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 42.647684. 
desigmsepforce is set to 106.037590. 
design:tensile_stress is set to 1696.601440. 
design:compressive_stress is set to 682.362944. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE 

cantilevenlength is set to 0.816750. 
desigmstrain is set to 0.027460. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 32.041453. 
desigmsepforce is set to 79.666656. 
design:tensile_stress is set to 1274.666496. 
design:compressive_stress is set to 512.663248. 

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength TRUE 

cantilevenlength is set to .75. 
desigmstrain is set to 0.032565. 
desigmallowstrain is set to 0.027300.
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desigmmateforce is set to 41.380015. 
desigmsepforce is set to 102.885701. 
design:tensile_stress is set to 1646.171216. 
design:compressive_stress is set to 662.080240. 
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress. 
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength FALSE 
Evaluating: desigmstrain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.089256. 
desigmstrain is set to 0.029604. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 37.617501. 
desigmsepforce is set to 93.530731. 
design:tensile_stress is set to 1496.491696. 
design:compressive_stress is set to 601.880016. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: desigmstrain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.081142. 
design:strain is set to 0.026914-. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 34.199344. 
desigmsepforce is set to 85.031956. 
design :tensile_stress is set to 1360.511296. 
design:compressive_stress is set to 547.189504. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: desigmstrain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
| Testing Rule: ckstrain FALSE
| Evaluating: desigmallowstrain
I Relevant rules:
\ ckdesign ckstrain
\ Testing Rule: ckdesign FALSE
I Testing Rule: ckstrain FALSE
| Evaluating: desigmmateforce
5 Relevant rules:
$ ckdesign ckmateforce2
a Testing Rule: ckdesign FALSE
6 
aaa
a
i
I
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Testing Rule: ckmateforce2 TRUE 
cantilever:lead_angle is set to 31.818182. 
design:strain is set to 0.026914. 
design:allowstrain is set to 0.027300. 
designrmateforce is set to 29.886331. 
desigmsepforce is set to 85.031956. 
design:tensile_stress is set to 1360.511296. 
design:compressive_stress is set to 478.181296. 

Evaluating: cantilevenlead_angle 
Relevant rules: 

smallest_lead_angle largest_lead_angle ckretum_angle 
Testing Rule: smallest_lead_angle FALSE 
Testing Rule: largest_lead_angle FALSE 
Testing Rule: ckretum_angle FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign TRUE 
design:criteria is set to good.

Done lorwardChaining.
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TRACE: MAXIMUM SEPARATING FORCE
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Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 50.
Asserting: cantilevenselfjocking as no.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE 

Evaluating: cantilevenlead_angle 
Relevant rules: 

smallestJead_angle largestJead_angle ckretum_angle 
Testing Rule: smallestJeaa_angle FALSE 
Testing Rule: largestjead_angle FALSE 
Testing Rule: ckretum 2ngle JrvAESE 
Evaluating: cantilevenretum_angle 

Relevant rules: 
ckselfjocking cknotself Jocking ckretum_angle 

Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotself Jocking FALSE 
Testing Rule: ckretum_angle nALSE 
Evaluating: cantilevenselfjocking 

Relevant rules:
ckselfjocking cknotself Jocking ckdesign cktensile cksepforce cktensile_stress 

cksepforce2
Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotself Jocking FALSE 
Testing Rule: ckdesign FALSE 
Testing Rule: cktensile FALSE 
Testing Rule: cksepforce TRUE 

cantilevenlength is set to 0.742500. 
desigmstrain is set to 0.040203. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 51.601557. 
desigmsepforce is set to 128.300157. 
design:tensile_stress is set to 2052.802512. 
design:compressive_stress is set to 825.624912.
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Evaluating: cantilevenlength 
Relevant rules: 

cklength
Testing Rule: cktensile_stress FALSE 
Testing Rule: cksepforce2 TRUE 

cantilever:retum_angle is set to 45.454545. 
design:strain is set to 0.040203. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 51.601557. 
desigmsepforce is set to 90.079478. 
design:tensile_stress is set to 1441.271648. 
design:compressive_stress is set to 825.624912. 

Evaluating: cantilevenretum_angle 
Relevant rules: 

ckselfjocking cknotself Jocking ckretum_angle 
Testing Rule: ckselfjocking FALSE 
Testing Rule: cknotself Jocking FALSE 
Testing Rule: ckretum_angle FALSE 
Testing Rule: cklength FALSE 
Evaluating: desigmstrain 

Relevant rules: 
ckdesign ckstrain ckstrain2 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.108000. 
desigmstrain is set to 0.036548. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 46.910274. 
desigmsepforce is set to 81.890028. 
design:tensile_stress is set to 1310.240448. 
design:compressive_stress is set to 750.564384. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE
TaM?n<7 P n lo *  r»Vctr*0iT"»0 TDTTP
lW U ll^  XVUlV/a VAOuUlllM A A.VO

cantilevenlength is set to 0.816750. 
desigmstrain is set to 0.030205. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 35.244432. 
design:sepforce is set to 61.525276. 
design:tensile__stress is set to 984.404416. 
design:compressive_stress is set to 563.910912. 

Evaluating: cantilevenlength 
Relevant rules: 

cklength 
Testing Rule: cklength TRUE 

cantilevenlength is set to .75. 
desigmstrain is set to 0.035820. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 45.516109. 
desigmsepforce is set to 79.456270. 
design:tensile_stress is set to 1271.300320. 
design:compressive_stress is set to 728.257744. 
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress. 
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
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Deactivating Rule: ckstrain2.
Evaluating: cantilevenlength 

Relevant rules: 
cklength 

Testing Rule: cklength FALSE 
Evaluating: design:strain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.098182. 
design:strain is set to 0.032565. 
design:allowstrain is set to 0.027300. 
desigmmateforce is set to 41.380015. 
desigmsepforce is set to 72.236000. 
design:tensile_stress is set to 1155.776000. 
design:compressive_stress is set to 662.080240. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: desigmstrain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.089256. 
desigmstrain is set to 0.029604. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 37.617501. 
desigmsepforce is set to 65.667879. 
design:tensile_stress is set to 1050.686064.

_  design:compressive_stress is set to 601.880016. 
Evaluating: cantilevenundercut 

Relevant rules:
NONE 

Evaluating: desigmstrain 
Relevant rules: 

ckdesign ckstrain 
Testing Rule: ckdesign FALSE 
Testing Rule: ckstrain TRUE 

cantilevenundercut is set to 0.081142. 
desigmstrain is set to 0.026914. 
desigmallowstrain is set to 0.027300. 
desigmmateforce is set to 34.199344. 
desigmsepforce is set to 59.700893. 
design:tensile_stress is set to 955.214288. 
desigmcompressive_stress is set to 547.189504. 

Evaluating: cantilevenundercut 
Relevant rules:

NONE 
Evaluating: desigmstrain 

Relevant rules: 
ckdesign ckstrain 

Testing Rule: ckdesign TRUE 
desigmcriteria is set to good.

Done torwardChaining.
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APPENDIX C 

EDIT PROGRAM

DECLARE SUB STRMOD (NSTRGS)
OPEN "G:\KAPPA\SNAP\DATABAS\REPORT.TXT" FOR INPUT AS #1 
OPEN "G:\KAPPA\SNAP\DATABAS\MATERIAL.TXT" FOR OUTPUT AS #2 
FOR 1 = 1 TO 7

INPUT #1, LINES 
NEXT I

DO WEDDLE NOT EOF(l)
INPUT #1, LINES
NAME1S = RTRIM$(MID$(LINE$, 1,16))
NAME2S = RTRIM$(MID$ (LINES, 17, 16))
NTYPES = RTRIM$(MID$(LINE$, 33, 51))
NMOD = VAL(MID$ (LINES, 84,11))
ELCNG = VAL(MID$(LINE$, 95,11))
TSTRESS = VAL(MID$(LINE$, 106,11))
CSTRESS = VAL(MID$(LINE$, 117,11))
CALL STRMOD(NAMEl$)
CALL STRMOD(NAME2S)
NAMES = NAME1S + NAME2S 
IF NTYPES = "Polypropylene" THEN 

MUPP = .4 
I MUPM = .25
I ELSEIF NTYPES = "Polystyrene" THEN
| MUPP = .5
i MUPM = .4

ELSEIF NTYPES = "Styrene Acrylonitrile" THEN 
I MUPP = .55

MUPM = .45 
ELSEIr N i YPES = "Polycarbonate" i HEN 

MUPP = .55 
MUPM = .45

ELSEIF NTYPES = "Acrylonitrile Butadiene Styrene" THEN 
| MUPP = .75
■ MUPM = .65

ELSEIF NTYPES = "Polyvinyl Chloride" THEN 
MUPP = .6 
MUPM = .55

ELSEIF NTYPES = "Acrylonitrile Butadiene Styrene + PC Alloy" THEN 
MUPP = .65 
MUPM = .55
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ELSE 
MUPP = 0 
MUPM = 0 

END IF
WRITE #2, NAMES, NTYPES, NMOD, ELONG, MUPP, MUPM, TSTRESS, 

CSTRESS
LOOP 
CLOSE # i  
CLOSE #2 
END

SUB STRMOD (NSTRGS)

FOR NCHAR = I TO LEN(NSTRG$)
CHS = MID$(NSTRG$, NCHAR, 1)
IF INSTRC -0/:", CHS) THEN 

MID$(NSTRG$, NCHAR, 1) =
END IF 

NEXT NCHAR

END SUB
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A P P E N D IX  D

IDEAS SNAP FEATURE

Parameter Name/Number: 1 - LENGTH 
Type of Parameter : Prompted 
Type of Limit : Min and Max
Type of Units : Length 
Prompt: Enter length of snap 
Default Value: 10.000
Minimum Value: 0.0010000 Maximum Value: 1.0000E+13 
The parameter controls the following entities:

Leaf 1, Extrusion Linear_Dimension_l

Parameter Name/Number: 2 - WIDTH
Type of Parameter : Prompted
Type of Limit : None
Type of Units : Length
Prompt: Enter width o f snap
Default Value: -4.0000
The parameter controls the following entities:

Leaf 1, Extrusion Distance in Z

Parameter Name/Number: 3 - THICKNESS
Type of Parameter : Prompted
Type of Limit : Min and Max
Type of Units : Length
Prompt: Enter height of snap
Default Value: 5.0000
Minimum Value: 0.0010000 Maximum Value: 1.0000E+13 
The parameter controls the following entities:

Leaf 1, Extrusion Linear_Dimension_3

Parameter Name/Number: 4 - UNDERCUT 
Type of Parameter : Prompted 
Type of Limit : Min and Max
Type of Units : Length 
Prompt: Enter height of undercut 
Default Value: 4.0000
Minimum Value: 0.0010000 Maximum Value: 1.0000E+13 
The parameter controls the following entities:

Leaf 1, Extrusion Linear_Dimension_4
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Parameter Name/Number: 5 - LEAD ANGLE
Type of Parameter : Prompted
Type of Limit : None
Type of Units : Length
Prompt; Enter lead angle
Default Value: 45.000
The parameter is referenced by the following parameters:

7 - LEADROT

Parameter Name/Number. 6 - RETANGLE
Type of Parameter : Prompted
Type o f Limit : None
Type of Units : Length
Prompt: Enter return angle
Default Value: 45.000
The parameter is referenced by the following parameters:

8 - RETROT

Parameter Name/Number: 7 - LEADROT 
Type of Parameter : Equational 
Type of Limit : Min and Max 
Type of Units : None 
Equation: 90+LEADANGLE 
Last evaluated value: 135.00

Minimum Value: 1.0000E-06 Maximum Value: 180.00 
The parameter controls the following entities:

Leaf 1, Extrusion Angular_Dimension_12

Parameter Name/Number: 8 - RETROT 
Type of Parameter : Equational 

| Type of Limit : Min and Max
i Tvne of Units : None
I Equation: 180-RETANGLE
i Last evaluated value: 135.00
j Minimum Value: 1.0000E-06 Maximum Value: 180.00
j The parameter controls the following entities:
5 Leaf 1, Extrusion Angular_Dimension_15

t!
i

1
3
3
8
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APPENDIX E 

USER EVALUATION FORM

NAME ______________________________________________________________________

1. Does the expert system prototype match known design solutions? Give examples.

2. Discuss the data input Is it self-explanatory? Is the format easy to use?
Do you have any suggestions for changes to the data input?

3. Does the prototype provide enough flexibility in altering the configuration geometry? 
Should any other variables be modifiable?

4. Are the appropriate design constraints (strain and maximum mating and separating 
forces Considered in the prototype? Would you add any additional constraints?

5. Discuss the output? Is it descriptive? Is the format appropriate?

6. Was the level of instruction adequate?

7. For a non-programmer, do you think the system would be easy to use?

For the extended evaluator
8. Discuss the ease of adding knowledge to the prototype. How easy is it to add new 
materials or rules to the system? How easy is it to modify the user interface?

9. Compare the expert system software development tools to other packages that you are 
familiar with.
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