
www.manaraa.com

INFORMATION TO USERS

This manuscript has been, reproduced from the microfilm master. UMX
fnms the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

Hie quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bieedthrougn, substandard margin ̂
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
ro/fii/wi rnpin ot the
♦ MV kMV WMKk WJk UIV W V A *

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

i
! A Bel! & Howell information C om pany
j 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA
j 313/761-4700 800/521-0500
i
!

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

EXPERT SYSTEMS IN ENGINEERING DESIGN:

A PROTOTYPE APPLICATION FOR INJECTION MOLDING OF PLASTIC PARTS

by
Sally Jean Steadman

A dissertation submitted to the
Department of Mechanical Engineering and

The Graduate School of The University of Wyoming
in Partial Fulfillment of Requirements for the Degree of

DOCTOR OF PHILOSOPHY
in

MECHANICAL ENGINEERING

Laramie, Wyoming
December, 1994

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 9524549

UMI Microform 9524549
Copyright 1995, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Steadman, Sally J., Expert Systems in Engineering Design: A Prototype Application for
Injection Molding of Plastic Parts. Ph.D., Department of Mechanical
Engineering, December, 1994.

Recent developments in expert system shells have the potential to markedly impact

the use o f knowledge-based expert systems for complex tasks like engineering design. The

knowledge required in an engineering design application is categorized and representations

are formulated for each of the knowledge types. A prototype expert system implements

each of the knowledge representations, integrating external knowledge sources -- a solid

modeler and a materials database -- with a hybrid expert system shell.

The context chosen for the prototype expert system is the design of an injection

molded plastic part; a subproblem, the design of a cantilever snap joint to join two

components, is representative of engineering design problems. A designer, using a solid

modeling system, develops a conceptual design and then invokes the expert system to

determine geometric parameters for the design. The object-oriented, rule-based expert

system integrates various knowledge sources for injection molding: heuristic rules, design

specifications, geometric configurations and constraints, analysis software, and a material

properties database. The expert system, using these knowledge sources interactively with

the designer, determines the feasibility of the conceptual design, and modifies the design,

iteratively, until an acceptable design is formulated.

The prototype system has illustrated the utility of expert system shells for

engineering design problems. Expert system shells offer rich development environments

with interfaces to programming languages (and hence to a multitude of existing computer-

aided engineering software systems), access to databases, and graphical capabilities to

assist in developing user interfaces. Expert system shells deal effectively with the

complexity of engineering design, and they provide a design engineer, familiar with the

heuristics of the problem, with an easy-to-use tool for rapid development of a design aid.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TO THE GRADUATE SCHOOL:

The members of the Committee approve the dissertation of Sally Jean Steadman

presented on October 11,1994.

1. Pell, Chairnx

L ktlA 'llfcbd/ A AAJsA
'Raymond G. Jacquot

V
tA V \,

Michafel Kmetz'

/lichael J. Ma?£ee 0Michael J. Ma^ee

LD_j2J (P.
Donald A. Smith

David E. Walrath

APPRO’

Kynn6M?Pell, Head, Depa^bentnf Mechanical Engineering

Tfromas G. Dunn, Dean of Graduate School

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to acknowledge the assistance provided by Bill Palsulich, Mold

Engineering Manager for Cobe Gambro Hospal Medical Inc., in sharing his injection

molding expertise and contributing to the knowledge base for this research. Further, I

would like to recognize the foundation for this research, provided by Dr. Michael Kmetz,

Integrated Design Engineering Systems. I would also like to thank Dr. Kynric Pell for his

valuable support and encouragement throughout this project

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION..1
Engineering Design..3
Status of Expert Systems in Design... 3
Research Objectives.. 4
Research Focus... 5
Prototype Development.. 7

2. KNOWLEDGE-BASED EXPERT SYSTEMS: AN OVERVIEW9
Architecture.. 12
Tools for Building Expert Systems.. 16
A History of Expert System Applications..18
Summary.. 20

3. BUILDING A KNOWLEDGE-BASED EXPERT SYSTEM..21
Characteristics of Expert System Problems...21
Tasks.. 22
Knowledge Acquisition... 23
Choosing a Tool...25
Developing a Prototype... 27
Validating the System... 28
Summary.. 28

4. EXPERT SYSTEMS IN ENGINEERING...29
Problem Solving...29
Design Methodology..30
Expert Systems in the Design Domain.. 33
Expert System Implementations: Design Applications... 35
Research Areas.. 43
Summary.. 44

5. PROTOTYPE DEVELOPMENT...45
Choosing an Expert System Building Tool.. 46
Kappa PC Developers Environment.. 48
Application: Cantilever Snap Joints.. 49
Knowledge Representation... 52
User Interface... 55
Inference Strategies.. 59
Prototype Evaluation..61

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1
IS

K
U

H
IS

C
II

6. INTEGRATION OF EXTERNAL KNOWLEDGE SOURCES................................. 63
External Interface Capabilities.. 65
Solid Modeling Software..66
Database Software... 67
Hardware / Software Environment... 71
Summary... 72

7. RESULTS AND CONCLUSIONS..73
Results.. 74
Conclusions... 76
Future Research... 78

APPENDIX A: Listing of Classes (including Methods), Instances,
Rules, Goals, and Functions...81

APPENDIX B: Rule Trace Examples..105

APPENDIX C: IDEAS Snap Feature.. 137

APPENDIX D: Edit Program... 139

APPENDIX E: User Evaluation Form...141

REFERENCES...142

iv

r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF TABLES

PAGE

Table 2.1 Characteristics of Conventional Programs vs. Expert Systems....................... 10

Table 2.2 Historical Expert System Development...18

Table 5.1 Materials.. 53

Table 6.1 PROSPECTOR Data Sheet.. 69,70

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

PAGE

Figure 2.1 Architecture of an Expert System..12

Figure 3.1 Programming environments.. 25

Figure 3.2 Expert System Shells...26

Figure 4.1 Design Process: An Iterative Model... 30

Figure 5.1 Graphical Presentation Tools..48

Figure 5.2 Representative Snap Joints.. 50

Figure 5.3 Cantilever Snap Joint Geometry..50

Figure 5.4 Object Hierarchy...52

Figure 5.5 Feature Selection...55

Figure 5.6 Design Interface.. 56

Figure 5.7 Initializing Cantilever Configuration.. 57

Figure 5.8 Entering Geometry Data... 57

Figure 5.9 Design Results..58

Figure 6.1 System Approach..63

Figure 6.2 Cantilever Snap Joint Object..66

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1

INTRODUCTION

The computer has become an essential tool for the engineer. Computer-aided

drafting (CAD), finite element modeling (FEM), and solid modeling, along with special

purpose analysis programs are known as computer-aided engineering (CAE) tools. These

tools are used in every facet of the engineering process — design, analysis, simulation, and

manufacturing, and are implemented at two distinct levels depending on the capabilities of

the hardware / software.

The lower level implementation of the CAE tools exists on DOS based, PC

compatible personal computer systems, and generally includes software with restricted

capabilities for the engineer: CAD, 3-D wireframe and/or surface modeler, and FEM.

These systems are primarily used by smaller engineering firms. Larger firms, on the other

hand, utilize more sophisticated implementations on UNIX based workstations, which are

generally faster than personal computers and offer a broader range of features and

capabilities. Software restricted to mainframe computers in the past now runs on

workstations. Typically, CAE software in the workstation environment is an integrated

system based on a three dimensional solid modeler. A mechanical designer, using an

integrated tool such as Structural Dynamic Research Corporation (SDRC) I-DEAS™ or

Dassault Systemes CATLA™, creates a three dimensional model. This model is then used

as input data for the engineering analysis incorporated in the integrated design software.

For example, the model can be analyzed using FEM or dynamic simulation techniques.

Regardless of the level of the CAE implementation, the key to productivity for both

the designer and for the entire product development team is the degree of integration of the

CAE tools. The computer-based design representation needs to be integrated with the

analysis and manufacturing tools or exported directly to these tools, with minimal user

intervention. Manufacturing firms are currently using solid models to automatically

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2

generate machining code for milling machines, turning centers, and other computer

controlled manufacturing equipment

Another, emerging, key to increasing productivity is concurrent engineering (also

known as simultaneous engineering). Concurrent engineering decreases the time required

to develop a product by considering the manufacturing process early in the design of the

product, or concurrently with the product design. In fact, this approach takes into account

not just the functionality of the product, but its quality, manufacturability, testability, and

maintainability.

Recent developments in Artificial Intelligence (AI), and more specifically in

knowledge-based expert systems, promise to significantly extend the use of CAE tools in

the interface between design and manufacturing. Traditional programming concepts and

algorithmic procedures do not lend themselves to this interface; the field of AI is attempting

to produce new technology to address these new concerns. Not only are expert systems a

part of AI, but AI also includes natural language processing, image processing, robotics,

and neural networks. However, the research presented here is limited to knowledge-based

expert systems.

A knowledge-based expert system (KBES) differs from conventional software in

several important ways. One definition widely used for expert systems is:

. . . interactive computer programs incorporating judgment, experience, rules

of thumb, intuition, and other expertise to provide knowledgeable advice

about a variety o f topics (Gaschnig, Reboh, and Reiter 1981,7)

Expert systems are symbolic processors, in which the knowledge base, or expert

information, is separate from the methods for manipulating the knowledge base.

Generally, programming languages or tools incorporate the methods used to manipulate the

knowledge, so the developer concentrates on constructing the knowledge base, and not on

the procedures for processing the knowledge. An expert system uses the knowledge base

to reason about a problem in a manner similar to the process used by an expert in solving

the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3

ENGINEERING DESIGN

Engineering design is a creative process, best conducted by a knowledgeable

designer with years of experience. Through his experience, the designer has developed a

set of design guidelines, or heuristics, that he applies to new design situations in

developing a conceptual design. Often, for an experienced designer, this conceptual design

is near to the final, optimal design solution. Using analysis tools, the design is evaluated,

and if the original design specifications have not been met, the design is modified. An

expert designer will again use his judgment and expertise to modify the design. The

modified design is evaluated, and this iterative process continues until an acceptable design

is accomplished. Sometimes the specifications must be relaxed in order to arrive at an

acceptable design; again, the expert uses his knowledge to adjust the specifications.

A difficulty encountered in applying expert systems to a design problem is acquiring

the expert knowledge for the system. Often an expert cannot express how, or why, he does

something; typically, he has not thought about the processes he uses to solve a problem.

Engineering design is clearly becoming more of a team effort because the amount of

data and the scope of considerations involved in a significant project transcend both the

breadth and depth of any one individual’s experience. The segmentation of a design

project, for the numerous designers working on the project, is facilitated by database

structures and file management systems incorporated in the integrated software. The team

concept is often informal in smaller firms, but can be very formal and highly documented in

larger firms.

Problems encountered in mechanical design share some common characteristics.

They often involve a choice of manufacturing processes and a wide choice of materials, and

the mechanical designs are often fairly complex, three-dimensional artifacts. Mechanical

design software attempts to integrate both the material property data and manufacturing

process simulations in order to assist an individual designer.

STATUS OF EXPERT SYSTEMS IN DESIGN

Early expert systems have been applied to problems such as an advisor for a finite

element program, and monitors or controls for manufacturing and chemical processing.

However, engineering design differs from these types of problems in two basic ways: the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

diversity of the information (or knowledge) and the complexity of the engineering systems.

In engineering design there is no one, correct solution, but usually an optimum solution can

be identified by applying constraints like economics, physical limitations, and

manufacturing considerations.

Few expert systems exist for the engineering problem solving tasks of planning and

design, and most of the ones that do exist have been implemented using programming

languages or environments. Representative implementations for these tasks are discussed

in Chapter 4. Programming languages or environments have not promoted the use of

expert systems for design problems since they are relatively difficult to use, and are

particularly onerous to the typical engineer with limited programming skills. Tools are

available that are appropriate, reasonable to use, and that facilitate rapid development of

expert systems for complex tasks such as engineering design. Expert system shells fit

these requirements, but have not been traditionally applied to engineering design problems.

The knowledge required in a mechanical engineering design problem is a

combination of design rules and guidelines, analysis software incorporating engineering

models and governing equations, and database information about material properties and

specifications. The knowledge is provided by multiple sources, requiring a variety of

specialized knowledge representations, and needs to be integrated for fully functioning

systems.

Current expert system implementations make little use of data generated in existing

applications. Computer-aided design and solid modeling systems are widely used by

engineers, and produce geometric and feature databases. Databases for material selection

are also important tools for design, as well as the analysis information generated by

software such as finite element modeling. Since all of these tools produce data that can

significantly enhance the capabilities of an expert system for design applications, they

should be integrated with the expert system.

RESEARCH OBJECTIVES

This research investigates the feasibility of applying knowledge-based expert

systems to engineering design problems. A variety of tools currently exist for the expert

system developer, ranging from programming languages which require considerable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5
understanding of the fundamental theory involved in expert system programming, to expert

system shells, which can be thought of as high level expert system languages. Expert

system shells appear to offer rich development environments with interfaces to

programming ianguages, access to databases, and graphical capabilities to assist in

developing user interfaces. Expert system shells are easy-to-use tools for the typical

engineer with limited computer skills, and provide a viable tool for developing expert

systems.

The goal of this research is to develop a generic approach, or template, for expert

system applications, based on expert system shells, that can be used by engineers in day-

to-day applications. To accomplish this goal, the steps in developing an expert system

application for engineering design problems must be formulated. The following tasks for

expert system development are explored, and formalized, in this research:

• investigate the use of expert system shells for design problems

• categorize the knowledge required to solve design problems

• formulate representations for the knowledge

• integrate the expert system with external databases and solid modeling software

• develop interactive capabilities, as well as graphical interfaces.

RESEARCH FOCUS

This research focuses on manufacturing processes, which are integrally involved in

product design. Since the specific details of the manufacturing process impact the

appearance, strength, and long term stability of a product, the process needs to be

considered during the product design. Thus the designer needs to have detailed knowledge

of the specific manufacturing process.

Manufacturing processes have recently evolved from processes used since the

industrial revolution for the traditional materials of metals, metal alloys, and wood.

Plastics have been used since WWII; followed by composite materials in the last two

decades. The associated manufacturing methods of injection molding, blow molding, and

thermal forming, which did not exist prior to the 1950’s, are responsible for a major

portion of today’s consumer goods. However, the number of designers experienced with

these new materials and methods has not kept pace with the penetration of these materials

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6

into the marketplace. Therefore, designers experienced with the traditional materials, as

well as novice designers, require assistance employing the newer materials in their designs.

The difficulty of using these materials in product design is compounded by the vast number

of plastic materials available, which currently exceeds 18,000. The existing materials are

being alloyed and blended by suppliers to create new materials at a very rapid rate.

The design area selected for this research is injection molded part design. Previous

work done in this area (Kmetz 1986) provides the foundation for this research. Kmetz

developed software for adjusting conceptual part designs, using a set of generally accepted

rules applied by plastic designers. His work incorporated the rules in algorithmic

procedures and did not use an expert system approach. His application was also limited to

those rules which can be implemented in algorithmic procedures. A major source of his

design information is in the design handbooks which are generally available from

individual material suppliers. These handbooks contain the experience of expert designers.

Another source of information required for his work is the material property information

which can be found in suppliers’ manuals and databases and in independently published

materials.

A successful plastic product begins with a good part design, which is a result of a

thorough knowledge of design as well as an understanding of the process and material

being used. (Beall 1990) In feature design, a complex part is decomposed into its basic

elements: the nominal wall, projections off the nominal wall, and depressions into the

nominal wall. The nominal wall can be simplified to a set of flat plates, no matter how

complex the shape is. All projections -- reinforcing ribs, pegs, gussets, snap joints — can

be addressed with similar guidelines. Likewise, all depressions are viewed as similar

design problems. Other plastic part features are combinations of these three basic elements;

therefore, guidelines can be used to design each basic element, and the elements assembled

to create complex geometries. Design guidelines often vary depending on the materials

chosen for the plastic part, and pertain to the moldability of a part

The scope of the research presented here is reduced to a manageable level, but

demonstrates the viability of expert systems for design applications, by limiting the expert

system application to one basic element of a plastic part. The design of a specific

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7

projection, a cantilever snap joint for joining two injection molded plastic parts, involves

the knowledge sources found in a generic design problem, and was selected as the focus of

this effort.

To design a snap fit, the experienced plastics designer uses a representative set of

the knowledge used in plastic part design problems. Heuristics, or the design rules, are the

basis for a conceptual design, or initial configuration. The conceptual design depends on

the material selected for the part and related material properties, and the functionality of the

part, i.e., the specifications for the design. Governing equations assist the designer in

determining the appropriate geometric relationships. Representations for the various

knowledge sources will be developed, providing a template for design problems in general.

PROTOTYPE DEVELOPMENT

The feasibility of using an expert system shell for engineering design problems can

be explored by building a prototype expert system. The first step is to identify a design

problem for the prototype implementation. This problem should be representative of

typical engineering design problems, to demonstrate the viability of expert systems as CAE

tools in the mechanical design area. It should also be confined to a fairly narrow domain,

to facilitate the implementation of the expert system. The design should involve each of the

knowledge types in an engineering design problem, to develop a template that can be used

in other design applications. If each knowledge type is incorporated in the prototype,

extensions are easily made to the template for more complex problems. The context

selected for this research, injection molded part design, fits these specifications.

Another important task in developing the prototype is selecting an appropriate tool

for the expert system implementation. Many expert system shells are available, offering a

range of features and capabilities. The prototype should demonstrate the ease with which a

typical engineer can develop an expert system for design applications.

A survey was conducted to identify expert system shells which provide the

necessary development environment for this research. The criteria used in evaluating

various products included ease of use, range of available features, implementation

platforms, and cost The tool selected was Kappa PC™, available from IntelliCorp, an

early leader in developing software for expert system applications. Kappa PC runs on IBM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PC® compatible hardware. Another product available from IntelliCorp, ProKappa™, is a

workstation version of an expert system shell. Although IntelliCorp offers both products,

they were developed independently, and are not completely compatible. Therefore a system

developed on a PC cannot be migrated to a workstation without conversion efforts.

An important aspect for software acceptance is the user interface. A graphical

interface can make a system easier to leam and easier to use; extensive explanation facilities

build a user’s confidence in the system, and thus promote its acceptance. The expert

system should accommodate use by novices, as a tutor, and by experts, as a design aid.

An interactive interface allows the user to participate in the design process, instead of

merely observing the results.

The resulting exper system is a computer-aided engineering design aid. The expert

system, using the knowledge sources interactively with the designer, assists the design

engineer in developing a conceptual design and determining its feasibility. The expert

system described here not only incorporates design rules (both heuristics and governing

equations), but interfaces to a materials database and to a solid modeling package. The

expert system iteratively evaluates and modifies the design, if necessary, until the

specifications are sufficiently accommodated. The prototype system does not identify an

optimal solution, but this functionality can be easily inc orporated in the expert system by

including additional rules that address constraints related to conditions for optimal design.

The prototype expert system is implemented in a fairly narrow domain. To be an

effective design tool, the research must be extended from designing a basic feature to

designing more complex parts and their corresponding mold designs, incorporating

sophisticated analysis techniques for flow within a mold and structural properties.

Extending the expert system to other manufacturing processes will produce an even more

valuable tool. However, the value of this research is in establishing the guidelines, or

templates, for developing expert system tools for the design process.1

1 This research has been accepted for publication (Steadman and Pell 1994; Steadman 1994).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2

KNOWLEDGE-BASED EXPERT SYSTEMS:
AN OVERVIEW

Artificial Intelligence (AI) is an area of computer science dealing with the emulation

of human thought processes. AI is concerned with understanding human problem-solving

strategies and incorporating (or simulating) these strategies in computer programs.

Knowledge-based expert systems (KBES) are a specific application of AI. Edward

Feigenbaum, generally regarded as the father of expert systems, defines an expert system

as (1981,221):

an intelligent computer program that uses knowledge and inference
procedures to solve problems that are difficult enough to require significant
human expertise for their solution.

Another definition is:

. . . solves real-world, complex problems using a computer model of expert
human reasoning, reaching the same conclusions that the human expert would
reach if faced with a comparable problem (Weiss and Kulikowski 1984,1).

However, the most widely accepted definition is given by Gaschnig, et al. (1981):

Expert systems are interactive computer programs incorporating judgment,
experience, rules of thumb, intuition, and other expertise to provide knowledgeable advice
about a variety of tasks.

These definitions also apply to many existing computer programs, which are not

usually thought o f as expert systems. Most authors make this distinction by defining an

expert system to be a program in which the knowledge base, or expert knowledge, is

separated from the methods for applying the knowledge, i. e. the inference mechanism,

reasoning mechanism, or rule interpreter. In fact, Feigenbaum, McCorduck, and Nii

(1988,7) state that the power of an expert system depends on the amount and quality of the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

knowledge it possesses, not on the particular formalisms and inference schemes it

possesses.

Other characteristics of expert systems include (Adeli 1988,6; Fenves 1986, 3;

Maher 1987,5):

• knowledge-intensive programs

• knowledge usually divided into many separate rules

• highly interactive

• user-friendly, intelligent, user interfaces

• explanation facility for reasoning

° incremental growth capability

• knowledge is readable and understandable

Expert systems can provide advice, answer questions, and justify their conclusions. The

differences between conventional programming and expert systems are summarized in

Table 2.1 (Maher 1987,4).

Table 2.1. Characteristics of Conventional Programs vs. Expert Systems

CONVENTIONAL PROGRAMS EXPERT SYSTEMS

Representation and use of data Representation and use of knowledge

Knowledge and control integrated Knowledge and control separated

Algorithmic (repetitive) process Heuristic (inferential) process

Manipulation of large databases Manipulation o f large knowledge bases

Programmer ensures Knowledge engineer relaxes uniqueness

uniqueness and completeness and completeness constraint

Midrun explanation impossible Midrun explanation possible

Numerical processing Symbolic processing

Solving complex problems involves a large knowledge base and extensive

searching of that knowledge. A human expert rapidly narrows the search by recognizing

patterns and using appropriate heuristics, or rules o f thumb. With the technology currently

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

available, expert systems are limited to narrow, highly specialized, well defined domains

(contexts). They are not able to reason broadly over a field of expertise. With future

improvements in computer memory size and speed, this limitation will gradually disappear,

and expert systems will be applied to wider domains, and more complex problems. Expert

systems are currently expensive to implement, requiring significant investments of human

and capital resources. These costs will also diminish with technological advances.

Expert systems are employed in many engineering fields for a variety of reasons.

They are used to compile and archive knowledge from employees and external experts to

develop intellectual capital for a firm. Expert systems can be available any time of the day

or night, not just during business hours; access can be distributed to many employees and

locations. They provide consistent answers, and can be updated with new expertise as new

policies or methods are implemented. They do not bias judgments, or jump to conclusions,

but systematically consider all possibilities. They attend to details, and may produce

several solutions for a particular set of conditions.

However, expert systems cannot reason from axioms or general theories, or by

analogy. They do not learn, and they lack common sense. The performance of an expert

system rapidly deteriorates when it is extended beyond the narrow task that it was designed

to perform. (Harmon and King 1985,7)

Companies using expert systems have measured both qualitative gains and

quantitative gains. Qualitatively, expert systems have improved not only the quality, but the

consistency of designs and their compliance with standards, and have encouraged

innovation among the users of the systems. Quantitatively, less time is spent in

bookkeeping tasks resulting in more productive time for engineering and designing tasks;

design data are available earlier in the product cycle, and can be used in downstream tasks

such as detailed documentation preparation, material specifications, and job costing. In

measuring productivity, one example is given by the Babcock and Wilcox Power

Generation Group in the design of heat transfer components where expert systems have

decreased, by two-thirds, the time to model the components; in addition, detail drawings

are automatically generated along with other manufacturing documents. (CIME 1989)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12

ARCHITECTURE

An expert system consists o f three main components: a knowledge base, an

inference engine (search strategy), and a domain (or context). Additional components may

include a user interface, an explanation facility, and a knowledge acquisition facility.

Figure 2.1 illustrates these components.

The knowledge base consists of the facts and the heuristics about the domain. The

heuristics include rules of thumb, and the strategies limiting the search for solutions in large

problem spaces, which are usually empirical, and are based on experience and intuition, not

mathematical or scientific proof. The inference engine controls the reasoning operations,

i.e., it is the executive for the expert system. The inference engine fires (applies) the rules,

and may alter the knowledge base.

KNOWLEDGEBASE B - S DOMAIN

iINFERENCE ENGINE

KNOWLEDGE EXPLANATION USERACQUISITION
FACITLITY FACILITY INTERFACE

J

(EXPERT) c I
USER J

Figure 2.1. Architecture of an Expert System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

The user interface should provide for several user-modes: client — getting answers

and explanations to problems, tutor — improving or increasing the system’s knowledge,

and pupil — harvesting the knowledge base for human use. (Michie 1980,370)

KNOWLEDGE BASE. The knowledge can be represented with various schemes:

production rules, predicate logic, semantic networks, frames, and object-oriented

frameworks. When several, independent, experts cooperate to solve a problem, a

blackboard model is used. A brief discussion of these schemes follows.

Production Rules. Production rales are IF-THEN (or condition-action, or

antecedent-consequent) statements, where satisfaction of one or more conditions results in

one or more actions. Each rule is an unordered, data sensitive unit, contrasted with the

sequenced instructions of procedural languages. The conditions are stored in a database,

and the actions modify the contents of the database when they are invoked. (Newell and

Simon 1972), (Davis and King 1977)

Predicate Logic. The simplest form of logic is propositional logic. Propositions

can be either TRUE or FALSE and can be connected by logical operators (and, or, not,

implies, equivalence) to form a propositional calculus of constants, functions, and

predicates. Predicates are used to represent relationships, e.g., SUM (A, B, RESULT).

Predicate calculus is a structured extension of propositional calculus employing variables

and quantifiers (all and some). It introduces specific roles for the elements of the

propositional calculus and allows for deductions to be calculated; the characteristics of a

particular object can be deduced from more general statements about the attributes of some

or all objects in a set to which the object belongs. (Dym and Levitt 1991)

Semantic Networks. A semantic network is composed of a set o f nodes,

representing objects and their descriptors, and a set of links (semantics) connecting the

nodes, representing the relations among the nodes. Commonly ,ed links are is-a and has-

a links. Semantic networks have been used primarily in natural language research.

(Quillian 1968)

Frames. A frame (or schema) is used to describe an object, and is a special case of

a semantic network. It is composed of slots which store information about the object. This

information may be default values, pointers to other frames, sets of rules, or procedures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14

Frames may be linked in a tree-like structure (network), thus allowing inheritance of slots

and their values from one level of nodes to subsequent levels. (Minsky 1975)

Object-Oriented Frameworks. Object-oriented programming involves the use of

objects, which are extensions of frames tightly coupled with operations (methods). Each

object is described by a number of attributes, which may be integer or real values, strings,

or complex data structures. The behavior of an object is defined by methods, or

procedures which manipulate the state of an object Objects interact with each other by

sending messages to execute one or more methods. Objects are arranged in a hierarchy of

classes and subclasses having similar attributes, with lower classes inheriting methods and

attributes from higher classes. Subclasses are specializations of their parent classes.

(Stefik and Bobrow 1985)

Blackboard. The blackboard model was developed to provide a reasoning

mechanism when multiple knowledge sources exist The blackboard serves as the location

for posting communications (messages) between the various knowledge sources. It also

keeps track of the current state of the problem. The blackboard model is generally used for

complex problems that must be partitioned into subproblems (knowledge sources). (Nii

1986)

The knowledge representation scheme should be chosen as the first step in

implementing an expert system. In order to choose an appropriate scheme, the knowledge

engineer must first organize the knowledge, gaining a familiarity with the domain. Some

general guidelines in choosing the appropriate representation are:

• simple production and logic systems are good for poorly understood domains,

where the knowledge structure cannot be well described

• structured production and frame systems increase run-time efficiency and reduce

the effect of the volume of knowledge on run-time, but are more difficult to implement

° logic systems are more difficult to implement for mathematical expressions.

INFERENCE ENGINE. The inference engine selects which rules to examine (in

either a forward or backward direction), evaluates the rules, generates new facts or

retrieves facts needed by rules, to generate solutions for a set o f conditions. When more

than one rule is eligible for firing, several options are commonly implemented for conflict

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15
resolution: breadth-first, depth-first, and best-first. Other strategies used to select which

rules to examine include assigning rule priorities, using the timing of candidacy, the textual

position, and the applicability of the rules to the task at hand. (Winston 1984)

Forward and Backward Chaining. In a forward chaining strategy, the rules are

searched to reach conclusions from information provided by the user, facts in the

knowledge base, and previous conditions. As conclusions are reached, premises or other

rules are satisfied, and the search continues until no more conclusions are reached. Since

this strategy works from the data to the goal state, it is also called data-driven. Forward

chaining is appropriate for problems where the solution is chosen from a very large number

of potential solutions, and a small amount of information from the user is available.

In a backward chaining strategy, a goal is selected and then the rules are searched

for those rules whose consequent actions match the goal. Backward chaining is also called

goal-driven, and is appropriate for problems with a limited number o f solutions, or when

all the available data does not need to be analyzed.

Most real problems use a combination of both strategies. A fully integrated system

allows the expert system developer the flexibility to solve complex problems.

Search Options. The hierarchy of rules can be arranged in a search tree where the

search for a solution is a traversal through the tree. A search can identify a single path

through the tree, or exhaust all o f the possible paths (or solutions) through the tree.

Terminating the search when an acceptable solution has been identified is much more

efficient, but does not necessarily identify an optimum solution.

In a breadth-first search, the nodes (or rules) are searched layer by layer, one layer

at a time. Thus all of the rules at a given depth are examined to see if they match the

conditions for the solution, before any of them are expanded. Breadth-first search is most

effectively used when most of the solutions are at relatively shallow depths of the tree.

When the solutions are fairly deep in the tree, breadth-first requires extensive processing of

a large number of layers before any solutions are identified.

For each node in a depth-first search, a path to a lower node is picked, ignoring all

alternatives at the same level, thus shooting straight down the tree along any path. When a

branch terminates, another path is found, until all alternative paths have been located.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Depth-first search can also be fairly expensive when the solution is located along the last

paths identified, or when the first paths are relatively long.

In a best-first search, the next node added to a path is the “best” node available. All

the available nodes are examined, and the node to expand is selected according to some

criteria. Best-first search is more likely to find the shortest paths than other methods, since

it always chooses the node closest to the solution criteria.

TOOLS FOR BUILDING EXPERT SYSTEMS

The expert system developer has a range of tools available to use for the

representation and control of the knowledge: programming languages, programming

environments, and expert system shells. These tools provide varying levels of support for

explanation facilities, graphics, and other features influencing the ease of use of the expert

system. Many of the tools provide for interfaces to existing databases, Computer-Aided

Drafting (CAD) packages, and to the multitude of analysis software (such as finite element

modeling). These interfaces, as well as facilities for knowledge acquisition and uncertainty

management significantly impact the ease of development of the system.

PROGRAMMING LANGUAGES. Procedural languages like FORTRAN and

BASIC are very effective for programming mathematical, algorithmic tasks, but are not

particularly useful for symbolic reasoning. LISP (LISt Processing) and PROLOG

(PROgramming LOGic) are generally used by AI programmers. PROLOG, used mainly

by European and Japanese programmers, contains constructs to manipulate logical

expressions, while LISP has operators to facilitate list processing. C is emerging as an

alternative to LISP, due to its portability and ability to interface with existing analysis

programs, which are usually written in FORTRAN or C.

PROGRAMMING ENVIRONMENTS. A programming environment is closely

associated with a particular language, and contains chunks of the code (similar to

subroutine libraries) that are useful for particular tasks. Most environments can also be

classified as hybrid tools. Hybrid tools combine a rule-based approach with procedure-

oriented programming and object-oriented programming. These tools are well suited to

engineering problems, which are generally complex problems requiring a variety of

representation schemes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17

EXPERT SYSTEM SHELLS. Expert system shells facilitate the rapid development

of expert systems. They incorporate specific knowledge representation schemes, inference

mechanisms, and control. Early shells were developed by stripping the knowledge from an

expert system. Many of the available commercial shells have facilities to interface to

existing databases and to procedural languages, as well as extensive graphics capabilities.

KNOWLEDGE ACQUISITION. Knowledge acquisition is the transfer of

problem-solving expertise from some knowledge source — human experts, textbooks,

databases -- to a program. This expertise is a collection of facts, procedures, and

judgmental rules about the domain, and is often very difficult to either extract from a human

expert or to represent in a knowledge representation. This task can be automated with

inductive inference methods that generate new rules from training examples. The research

in this area is in its infancy, however, and has exposed difficulties in achieving consistency,

correctness, and completeness in knowledge bases. Computer aids do exist to assist in

knowledge acquisition: knowledge-base editors and interfaces, explanation facilities, and

knowledge-base revision. Sophisticated editors are being developed that facilitate

instruction and check for semantic inconsistencies. These editors, along with a facility to

explain the basis for reasoning, affect the acceptance by the user and/or the expert

Semantic consistency checks and automated testing help in updating the knowledge base, to

minimize introducing new errors into the expert system. (Buchanan et al. 1983,149 -157)

UNCERTAINTY MANAGEMENT. The knowledge in the expert system may not

be exact Several methods are commonly used to deal with uncertain or incomplete

knowledge: certainty factors, Bayes theorem, and fuzzy logic. Certainty factors are

informal measures of confidence; Bayes theorem provides a method for calculating

probabilities; and fuzzy logic applies to sets of information with unsharp or ‘gray’

boundaries. (Bonissone and Tong 1985,241 - 250)

HARDWARE REQUIREMENTS. Early expert system implementations were on

hardware devoted to artificial intelligence tasks, such as Symbolics, LISP Machines Inc.

(LMI), or XEROX AI. These specialized machines are relatively expensive and are not

very useful for general purpose computing tasks. Expert systems are also available on

mainframes, minicomputers, workstations, and PC level machines. Some systems are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

available on all levels of hardware, an advantage in developing a system for distribution. A

system can be developed on a VAX class machine with a rich development environment,

and then implemented on PC class machines at relatively low cost

PERFORMANCE. Expert system performance is inversely proportional to the

number of elements being reasoned about, and is dependent on the knowledge

representation scheme, how structured the knowledge base is, and obviously, the hardware

chosen. Expert systems are knowledge intensive and have considerable memory

requirements. Misusing a tool, i.e., using forward chaining in a backward chaining

environment, can significantly impact the performance of the system. In general, an

efficiently written production system is more efficient than a hybrid tool using rules.

The performance of a system is also dependent on human factors: ease o f use,

familiarity, understandability. Its productivity is associated with the ability to provide

assistance. Other factors influencing performance are portability and extensibility.

A HISTORY OF EXPERT SYSTEM APPLICATIONS

A brief discussion of some early expert system applications illustrates the historical

development of expert systems. Table 2.2 summarizes these applications. More recent

works are outlined in Chapter 4.

Table 2.2. Historical Expert System Development

SYSTEM DATE DEVELOPER

DENDRAL

MACSYMA

HEARSAY-I & II

INTERNIST

MYCIN

PROSPECTOR

SACON

PUFF

R1 (XCON)

1965 - 1979 Buchanan & Feigenbaum
Stanford Heuristic Programming Project

1968 - 1982 Engleman, Martin, & Moses
MIT

1970 - 1976 Erman, Hayes-Roth, Lesser, & Reddy
Carnegie Mellon University

1974 Pople & Myers
University o f Pittsburgh

1976 Shortliffe
Stanford Heuristic Programming Project

1978 Duda, Gaschnig, Hart, et al.
Stanford Research Institute (SRI) International

1978 Bennett & Engelmore
Stanford Heuristic Programming Project

1979 Kunz, Aikins, Shortliffe
Stanford Heuristic Programming Project

1981 McDermott
Camegie-Mellon University & DEC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

19

DENDRAL originated the fundamental concept of expert systems, manipulating

large amounts of expert, heuristic knowledge in a computer program. The program is

designed for use by organic chemists to infer the molecular structure of complex organic

compounds from their chemical formulas and mass spectrograms. The heuristic

knowledge of expert chemists is incorporated into a rule-based system. DENDRAL’s

success proved that expert systems could be developed and launched researchers on the

study of knowledge-based systems. (Buchanan & Feigenbaum 1978)

MACSYMA is a large, interactive computer system designed to assist

mathematicians, scientists, and engineers in solving complex mathematical problems.

Inputs to MACSYMA are formulas and commands, and outputs are solutions to symbolic

problems. MACSYMA is widely used by researchers in government laboratories,

universities, and corporations. (Rand 1984)

HEARSAY-! & II are speech understanding systems. Each knowledge source

contributes information to a common working memory, or blackboard. HEARSAY-II

demonstrated how multiple knowledge sources could be integrated in very complex

problem solving. (Erman 1980)

INTERNIST assists a physician in making multiple and complex diagnoses in

general internal medicine given a patient’s history, symptoms, or laboratory test results.

The system is one of the largest medical expert systems developed, and therefore uses a

structured approach for the knowledge base. INTERNIST must consider not only a very

large number of diseases, it must also consider all the possible combinations or interactions

among these diseases. Because of the structure and size o f the knowledge base, the

program does not perform very well; additional development has been done with the

successor, CADUCEUS, to make the program more attractive to physicians. (Pople,

Myers, and Miller 1975)

MYCIN is the most famous of the early expert system projects. It diagnoses blood

and meningitis infections and recommends appropriate drug treatment, on the basis o f an

interactive dialogue with a physician about a particular case. Each rule has an associated

certainty factor, indicating the expert’s level of confidence in the rule. It also has an

explanation facility to justify the inferences made by the system. MYCIN exemplifies the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

essence of a typical expert system. The developers subsequently built EMYCIN — an

empty MYCIN, or MYCIN without its knowledge base. EMYCIN contains all the

machinery needed to reason about a knowledge base and to conduct consultations with a

user. (Shortliffe 1976)

PROSPECTOR aids the geologist in finding ore deposits from geological data. A

combination of rule and semantic networks are used to represent the knowledge. The

system contains a knowledge acquisition system (KAS) to facilitate the acquisition of

knowledge. Information is either requested from the user, or it can be volunteered. (Duda,

Gaschnig, and Hart 1979)

SACON advises engineers on the use of the finite element structural analysis

program MARC. SACON was developed using EMYCIN to evaluate EMYCIN’s

environment for diagnostic applications in other domains. (Bennett and Engelmore 1979)

PUFF diagnoses the presence and severity of lung disease in a patient by

interpreting measurements from respiratory tests administered in a pulmonary function

laboratory. PUFF was built to demonstrate the practicality of using the shell EMYCIN to

prototype additional systems. (Kunz et al. 1978)

RUXCQN) assists in configuring VAX computer systems for Digital Equipment

Corporation, and is the largest, most mature rule-based expert system in operation. From a

customer’s order, R1 decides what components must be added to produce a complete

operational system and determines the spatial relationships among all the components. It

also outputs a set of diagrams of these relationships. It was developed using a

programming environment tool, OPS5. (McDermott 1982)

SUM M ARY

AI research has been underway for more than three decades, but it has only been

since the late 80’s that its impact has been measurable. The most notable and visible results

are in the area of expert systems, the implementations of which have exploded in the past

several years. To effectively use expert systems, we must understand their capabilities and

limitations; they are not the solution to every problem. They are, however, a viable

technology providing a new approach for solving many decision problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3

BUILDING A KNOWLEDGE-BASED EXPERT SYSTEM

The first step in developing an expert system application is to determine if the

problem is suitable to an expert system. Some problems are better solved by conventional

programming tools; other problems exhibit characteristics that are better solved by expert

systems. Once an expert system approach is selected, the process of implementing the

system, or knowledge engineering, begins. The developer, in this case also called a

knowledge engineer, is responsible for acquiring the knowledge and embedding it in an

expert system. The knowledge engineer must choose an appropriate tool for the expert

system implementation, and then develop a prototype to test the implementation.

CHARACTERISTICS OF EXPERT SYSTEM PROBLEMS

Problems to be solved by expert systems share some important characteristics (Dym

1985,18; Winston 1987,15 - 16):

• the domain knowledge is highly subjective, judgmental, and rich in reasoning

• the knowledge cannot necessarily be coded or organized

• an expert is much better at solving the problem than an amateur

• the problem is clearly defined, in a fairly narrow domain; the expert system’s

complexity will naturally grow as the system evolves

• adequate data is available

• at least one expert is available, and committed, to the project and can explain the

reasoning used in solving the problem

• the task is not too easy nor too difficult for the expert to solve; it should take a

human expert from 1-12 hours to solve the problem.

Conventional programming techniques have not been successfully applied to problems

exhibiting these characteristics, and expert system implementations will not be successful

unless these criteria are met.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22

Even though expert system developers experience some of the same problems that

conventional system developers experience, some myths about expert systems have arisen

(Fox 1990,13 - 16). Among these myths are that expert systems do not make mistakes,

small prototype systems can be scaled up into full-scale solutions, expert systems can be

easily verified and validated and are easy to maintain, and that if an expert exists, an expert

system can be created. These myths are worth noting, in order to avoid making mistakes,

and thus to build more effective systems.

TASKS

The types of problems that have been solved by expert systems can be classified as:

interpretation, diagnosis, monitoring, control, prediction, repair, instruction, planning, and

design. These tasks can be grouped into derivation problems and formation problems.

DERIVATION. Most of the early expert systems solved derivation problems. The

outcome, or goal, exists in the knowledge base and the solution is to identify the path to the

goal. Typical tasks are:

• Interpretation. Analyzing data to determine the meaning. The data is often

unreliable, erroneous, or extraneous.

• Diagnosis. Identifying problem areas or faults based on potentially noisy data.

Often the first step is to interpret the data which can be incomplete, inexact, or from faulty

sensors.

• Monitoring. Interpreting signals continuously, or intermittently, and warning

when intervention is required.

• Control. Adjusting or regulating a system based on signals monitored.

• Prediction. Inferring likely consequences from given situations.

• Repair. Acting to rectify faults in a system. The first step is to diagnose.

• Instruction. Identifying deficiencies in a student’s problem solving knowledge

and recommending actions.

FORMATION. Most engineering problems are formation problems, complex

procedures where the solution is not already in the knowledge base. The solution space is

generally very large, and methods must be implemented to prune the number of likely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

23

outcomes from the solution space. Typical tasks are:

° Planning. Creating a program of actions to achieve a goal, subject to specified

constraints. Excessive use of resources should be avoided.

• Design. Creating objects that satisfy certain specifications. In large design

problems, the task is usually divided into a number of subtasks that interact with one

another. Priorities must be established for resolving conflicting goals.

In formation problems, since the exact solution does not necessarily exist in the

knowledge base, it must be generated by the inference mechanism using the knowledge

base. A generate and test method is often used; aE possible solutions are generated, then

tested, until a solution is found that satisfies the goal condition. Another method, problem

reduction is also used for formation problems. Problem reduction involves factoring the

problem into subproblems (subsystems). Formation problems usually use a hierarchical

approach to develop a plan at successive levels of abstraction. They frequently involve

backtracking, when no solution exists along the current path, and constraint handling for

interaction between the subsystems.

KNOWLEDGE ACQUISITION

The process of extracting knowledge from an expert (or source of expertise) and

transferring it to an expert system, knowledge acquisition, is an important and difficult

problem. Knowledge acquisition plays a major role in designing an expert system, and is

viewed by many authors as a bottleneck in the construction of expert systems.

Buchanan (1983,140 -149) has described the following elements as part of the

knowledge acquisition process:

• Identification of experts, resources, and knowledge engineers

• Conceptualization of tasks and subtasks, and the techniques used by the expert

• Formalization of concepts by mapping them into representation schemes

• Implementation by encoding knowledge, and iteratively acquiring and testing the

system’s expertise

• Testing and refinement of the prototype, by an expert; exhaustive testing is

infeasible, due to the combinatorial explosion of the possible solution states.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24

Eliciting knowledge from the expert is a time consuming process. Often an expert

can tell you what he does, but not how he knows to do it. Encouraging the expert to

describe his expertise in the most natural way may help elicit knowledge about the

procedures he uses in his problem solving. The expert tends to keep the whole problem in

mind, and can find it hard to focus on one sub-issue when several, related sub-issues are

also present Once a prototype system is implemented, it becomes difficult for the expert to

distinguish between fundamental problems in the knowledge base and superficial problems

in how the program presents information to the user. Several methods have been used in

knowledge acquisition (Hart 1985,456 - 460).

• Interview. The knowledge engineering explores, with the expert, the kinds of

data, knowledge, and procedures needed to solve specific problems. This process is

difficult to structure, and since the expert is often not explicitly aware of the methods he

uses, he often loses interest in the process.

• Protocol analysis. An expert examines documented cases and talks about them.

This is more structured, thus reducing some of the problems with interviews. A variation

of this method involves watching the expert solve real problems on the job.

• Induction. A set of specific examples, a training set, is used to automate the

induction of rules or patterns, i.e., machine learning.

• Repertory grid technique. An expert produces examples and two valued attributes

for the examples. The grid is a cross-reference between the examples and the attributes.

This technique helps the expert structure and classify the knowledge.

In each of these techniques, the knowledge engineer often needs to guide the expert in

formulating the data and procedures that will produce a relevant, and useful, knowledge

base.

To implement the expert’s knowledge in the expert system, the knowledge engineer

will need to choose an appropriate representation and inference strategy. He must be

familiar with the various knowledge representation schemes and inference strategies in

order to choose the schemes that best fit the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I'II
Bf

fia
tiS

Bf
rea

 H
U B

I i
ss

a.
 #

ssa
on

ii
im

uK
w

ui

25

CHOOSING A TOOL

A multitude of expert system building tools are available (van Koppen 1988;

Waterman 1986; Harmon and King 1985; Hayes-Roth, Waterman, and Lenat 1983). Some

tools, widely used for expert system development, are summarized in Figures 3.1 and 3.2.

9 Included
O Not included

Qac/5<a
t i
toa

aa

a
es
O

3
Qa
uo
s

Qa
<n
ci
S<
a

Qa
z
Sso
o
C -i

aa
3o

a |z zz <
< S3
S3 UU QQ es

<
< £

ei uO <
a ca

oz
aQ
Z
<
S3
>-

<
£au

zo
z
22
5
av<
a
oQaa
£ozS4

zo
3<z<
b2
s

05
u
3a
<a
a

a
o<
to
az<a

ooaa3a
<
e
g
S3f->O

ART © © © • © © © o © •
Common
LISP

Hypothetical
worlds

HEARSAY-IH • o o o
O O o o o o LISP

Blackboard
architecture

KEE © © © © © © o o © ©
Common
LISP

External
databases

Knowledge Craft © © # © © © o o © ©
Common
LISP

Language
interfaces

LOOPS © © o © o o o o o o Interlisp-D

OPS5 © 0 0 o © 0 o o 0 o C Pattern
mnfrhinci

ROSIE © © 0 o o o o o o o Interlisp English-like
syntax

SMALLTALK
o o o • o o o o o •

Highly
interactive

Figure 3.1. Programming Environments

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

V Included o Not included

EXPERT SYSTEM
SHELLS (LARGE)

Da00<a
KJJ
cd

L j i—j

« 2 o
E- O
EJn
O

<a
ci
2<
£

<
5=cd
Ou-

<
£
t»d
u<
o

>-
E-z
<
£
atj

wj
£ozbd

<z<
Jc .

oo
u
£<eda

a
o<:a
oz<
►4

£

£asHo
Concept Modeler 0 O o 0 O O O o o 3-D Solids

Modeler
EXPERT © O o 9 9 9 © © o FORTRAN Consistency

checkins?
EXPERT-EASE • o o O O O • o o PASCAL Induction,

Examples-based
G2 o 9 o O O O • o © LISP Realtime

Animation
GOLDWORKS II • 9 9 • 9 9 O © ©Common

LISP
Ext. interfaces

GURU © O o 9 9 o ©C Nat. Lang
rel DBMS

INSIGHT2+ • o o 9 9 9 o • o PASCAL Math functions
Lane interfaces

M.l © o o 9 9 9 o • o C English-like

Personal
Consultant © 9 o 9 9 9 o 9 o LISP LISP functions

RULE-MASTER © o o 9 9 9 9 9 o C
Rule induction
Lang interfaces

S.i 9 r \
V V v

r\
v

A A
C

Procedure
nrientert

Smart Model o O o o O O o o o CAD based

EXPERT SYSTEM
SHELLS (SMALL)

1st Class Fusion © o o 9 9 • 0 0 9 PASCAL
Rule induction
Lang interfaces

Kappa PC • o • 9 9 9 o © 9 Lang interfaces

Knowledgepro © o 9 9 9 O o • 9 LISP
PASCAL

Hypertext
External int.

Levels Object 9 o o 9 9 9 o © 9 PASCAL PRL"
dBASE

Nexpert Object 9 9 9 9 9 9 0 © 9 C External int.

VP-EXPERT 9 o O 9 9 9 o e 9 C External int.
Hvnertext

Figure 3.2. Expert System Shells

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

Programming environments give the most flexibility in developing systems, but are

considerably more difficult to learn and to implement than expert system shells. An

important consideration in choosing an implementation tool, is the knowledge

representation and inferencing schemes selected by the knowledge engineer. Many of the

newer expert system shells offer a variety of schemes, and are therefore suitable for

developing a variety of expert systems applications. Derivation problems are best suited to

rule-based systems, formation problems to object-oriented systems.

In general, the developer should select the highest level programming environment

possible, typically a hybrid tool. A tool with interfaces to existing algorithmic code may be

required for some applications. An expert system shell with graphics capabilities will

enhance the development of interactive graphical applications.

DEVELOPING A PROTOTYPE

A prototype system can test the adequacy of the chosen programming tool, the

representation of the expert’s knowledge, and the strategy for inferences. The prototype

should focus on a small set of hypotheses, combine the smallest number of findings

necessary to discriminate among the solutions, and include findings that significantly

improve the quality of decisions (Weiss and Kulikowski 1984,106). The system will be

developed iteratively, with increasingly sharper and deeper understanding of the expertise.

A large expert system project should be managed as any other large software

project, incorporating modularity, top-down design, documentation, and accountability.

An obvious observation is that object-oriented systems are more modular and therefore

more conducive to top-down design.

Most expert system implementations for engineering applications integrate expert

system techniques with procedural code, supported by hybrid tools. Links to appropriate

software for computations, database management, spreadsheet analysis, and other existing

software tools, enhance the functionality of the system, and reduce the development time.

The user interfaces should receive particular attention, and will require about half

of the development time. Features that are available in some tools are windows, gauges,

menus, displays, mouse sensitive screen regions, and natural language interfaces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

28

Different user interfaces for various levels of users, from novice to expert, will augment the

usability and acceptability of the system.

An important aspect in developing an expert system is involvement of both the

expert and the user. The expert needs to be willing, and the user must be involved in the

development The system must be reviewed with both the expert and the user, they also

must be involved in testing and refining the system.

Maintenance of the system will be required. When an expert system stops

evolving, the effectiveness of the system begins to decline, since the nature of most

problems solved with expert systems changes over time.

VALIDATING THE SYSTEM

Validating an expert system typically involves running test cases and comparing the

results against known results or expert opinions. The expert(s) contributing to the expert

system knowledge base is a valuable resource for evaluating the tool. However, avoid

validating the system against the expert, or test cases, that assisted in the development of

the system since this may not identify problems or inconsistencies that were not considered

during the development of the system.

Validation methods can be either qualitative or quantitative. Some qualitative

methods are: predictive validation, field tests, subsystem validation, sensitivity analysis,

visual interaction; quantitative methods include statistical tests and consistency measures.

(O’Keefe, Balci, and Smith 1987, 85 - 88) The acceptable performance determined by

either method will not be a binary value (yes or no), but will be a range of values.

SUM M ARY

The key to successfully implementing an expert system is the knowledge engineer.

The knowledge engineer must be able to work with the expert to formalize the knowledge

and inference strategies. The knowledge engineer must also be familiar with the available

tools in order to effectively develop the representation schemes for the knowledge and to

implement the system. In order to implement a viable expert system, the knowledge

engineer must be able to obtain the support of the expert and the potential users.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4

EXPERT SYSTEMS IN ENGINEERING

Problem solving tasks in engineering mainly involve planning and design (or

formation type problems). Early expert systems were applied to derivation problems,

problems such as medical diagnosis and molecular structure interpretation. Many systems

have been developed to monitor and control manufacturing and chemical processing, which

are also derivation problems (Maus and Keyes 1991). However, few systems exist for

design applications.

Two characteristics separate engineering problem solving from tasks addressed by

the early systems. The first is the diversity of the knowledge, a combination of engineering

models and scientific principles, information about materials and specifications, and

heuristic information. A variety of specialized knowledge representations is needed to

depict this diverse knowledge. The second characteristic is the complexity of engineering

systems, generally physical systems with many interconnected components.

PROBLEM SOLVING

Algorithmic solutions are applied to well-structured problems. Newell (1969,365)

defines a well-structured problem as one that satisfies the criteria:

• It can be described in terms of numerical variables, scalar and vector quantities.
• The goals to be attained can be specified in terms of a well-defined objective

function.
• There exist computational routines (algorithms) that permit the solution to be

found and stated in actual numerical terms.

On the other hand, knowledge-based expert systems are well suited to ill-structured

problems in a complex domain. Noble (1979,27) suggests that ill-structured problems can

be characterized by some or all of the following: complex, dynamic, ill-defined, political,

interactive, uncontrollable, and most importantly, unpredictable.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

30

Many engineering problems are not amenable to algorithmic solutions; they rely on

judgment and experience. The problem-solving process involves skillful manipulation of

large quantities of knowledge, assumptions, and hypotheses, in a trial and error manner,

revising until an acceptable solution is found. These problems are amenable to expert

system solutions.

DESIGN METHODOLOGY

Design is a creative process, involving multiple solutions. It is empirical, intuitive,

approximate, and most importantly, requires expertise. It also involves quantitative

analysis. Several steps in the design process have been identified (Hubka 1982,62; Pahl

and Beitz 1984,38 - 40; Ullman 1992,89 - 96) and are illustrated in Figure 4.1.

SPECIFICATIONS

CONCEPTUAL DESIGN

GENERATE EVALUATE

PRODUCT DESIGN

EVALUATEGENERATE

iteration

PRODUCTION

Figure 4.1. Design Process: An Iterative Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31

SPECIFICATIONS. The first step in design is to transform the problem into a

well-formed set of design specifications, which are the primary communication tool and

control mechanisms for engineering design. The initial customer requirements are often ill-

defined, imprecise, incomplete, and may even contain conflicting information. They need

to be molded into a precise, and quantitative, set of design specifications for an ideal

description. This description will be used to compare all potential, or conceptual, designs

in order to discard inappropriate solutions.

CONCEPTUAL DESIGN. In the conceptual design phase, the product is viewed

as a whole, from a functional approach. The individual assemblies and components are

treated as black boxes, and are described by their functional capabilities — or what the

product does, not by their structural composition -- or how the components work. The

conceptual design should identify manageable subsystems to be designed by further

refinements.

Creativity is important in generating conceptual designs. Equally important, is the

generation of many potential designs. Often a designer will focus on an initial solution,

with the high probability that better solutions to the design problem are neglected. The

designer must avoid this tendency, as well as the tendency to dismiss unlikely solutions

before they have been developed to an extent that can by judged against the specification for

the ideal design. The creative process is based on synthesizing personal experience or the

experience of outside experts.

Several strategies which can be implemented as CAE tools are used to generate

conceptual designs. One strategy involves redesigning or modifying an existing product to

meet the new specifications. Another strategy uses existing components and develops new

configurations to satisfy the design requirements. Parametric designs are often used by

generating conceptual designs using alternate values for the design variables (or

parameters).

The conceptual designs are evaluated by comparing the designs to the specifications

developed during the first phase of the design process, and then judging the feasibility of

each design. This is often accomplished by a rough analysis or by using empirical rules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32

The designs should also be assessed for their technological readiness. Generating and

evaluating conceptual designs is an iterative process, and should be encouraged at this

phase. It is much less expensive to iterate a conceptual design than a product design.

PRODUCT DESIGN. The conceptual design is refined in the product design phase

to a fully developed, optimal design. Each component is detailed; and choices for

materials, processes and vendors are finalized. A recent trend is to design the product

concurrently with the manufacturing process, by a team composed of the designers and

manufacturing and materials specialists.

As the product designs are generated, they are evaluated for both performance and

cost, and for manufacturability (including the ease of assembly) and maintainability.

Experimental and analytical models are used to judge the performance of the design; many

automated procedures exist to assist in evaluating the design. Analysis procedures produce

only quantitative information about the design; they do not make judgments about what the

information means or determine whether the design is good, or how to make it better.

Evaluating the product design may expose limitations in the design that can be

eliminated by modifying the design. Iteratively generating and evaluating product designs

will result in a better product Sometimes it may be necessary to return to the conceptual

design phase, and generate new possibilities.

The result of the product design is a set of design records: detail and assembly

drawings, bill of materials, assembly information, quality control and quality assurance,

and instructions for installation, operation, maintenance, and retirement These records are

used to convey the product to manufacturing and to eventually communicate with the

customer.

The design process progresses from a general overview of a problem solution to

increasingly detailed components, or subtasks, o f the problem solution. Design is a highly

iterative process of interconnected steps, iterating between synthesis of problem solutions

and analysis of those solutions. Specifications may need to be relaxed to accomplish the

design; conceptual design models are modified and reevaluated until an optimum design is

found. New information is often incorporated after the design process has begun, or new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

33

insights are gained that impact the design. The problem is decomposed into subproblems,

then redecomposed; specified and respecified; designed and redesigned.

Hoeltzel and Chieng (1989,48 - 50) postulate the following systematic design

methodology:

• Design procedures propagate gradually from a qualitative domain to a quantitative

domain, from synthesis to analysis, estimation to evaluation. Thus, design

procedures are generally hierarchical.

• The design process can be separated into a generic portion and a domain-specific

portion, and may be further subdivided into a creative design portion and a routine

design portion, depending on the coupling of the design variables.

• An abstract design optimization process, based on a hierarchical data structure and

monotonic reasoning, is guaranteed to converge during the search for the optimum

solution.

Mechanical design involves additional aspects, not necessarily found in other

engineering design processes: material selection, sensitivity to manufacturing concerns and

processes, complex three-dimensional geometries, and non-modularity.

EXPERT SYSTEMS IN THE DESIGN DOMAIN

Knowledge-based expert systems for mechanical engineering design have been

implemented using several approaches. J. R. Dixon and the Mechanical Design

Automation Laboratory at the University of Massachusetts use a design-evaluate-redesign

approach (Dixon, Simmons, and Cohen 1984). A second approach, used by David Brown

at Worcester Polytechnic Institute and B. Chandrasekaran at The Ohio State University,

involves design refinement with plan selection and redesign (1984). Another approach,

transformation, is proposed by A. S. Kott of the Carnegie Group Inc. and J. H. May at the

University of Pittsburgh (1989).

DESIGN - EVALUATE - REDESIGN. This architecture is applied to the design of

component parts and small systems where the initial design and each subsequent redesign

iteration is a complete design. An initial design is evaluated or analyzed to determine its

expected performance in terms of performance parameters that may include cost, function,

and manufacturability issues. A decision is made as to the design’s acceptability. If the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

34

design is acceptable, the task is complete. If not, the design is redesigned and reevaluated,

iteratively. Redesign can ultimately fail; then the process returns to the initial step to relax

the requirements. In redesign the analysis results and the reasons for unacceptability are

used heuristically to guide the changes.

The four distinct functions in this methodology — initial design, evaluation,

acceptability determination, and redesign -- are each represented by a separate knowledge

source. Two other functions — control and the user interface — axe also represented in

separate knowledge sources.

DESIGN REFINEMENT WITH PLAN SELECTION / REDESIGN. Brown and

Chandrasekaran separate design into three classes of increasing difficulty and complexity:

• routine design with known design plans

• known components but design plans unavailable

• unknown components.

Routine design is accomplished by decomposing the known design plan. Complexity is

still a factor in routine design and is related to the number of components and sub­

components and the variety of combinations of the design goals. The knowledge sources

are identified since the components and subcomponents are known.

The knowledge forms into clusters; it is not a large unstructured collection of rules,

all having equal potential for use. The knowledge is a hierarchical organization of:

• conceptual specialists, each with different expertise and a set of plans

• plans, sequence of calls to tasks

• tasks, series of steps

• steps, which make the design decisions.

The system is divided into four stages: requirements validation; rough-design for

determining the most important values (e.g., material), thus pruning the design space;

design; and redesign by relaxing the requirements with user interaction. Each stage

involves plan selection and design refinement

The interaction between the subsystems is weak, but it is not negligible. Thus

routine design is almost decomposable, but still requires communication between the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35

subsystems. Communication between the specialists is through messages across the

hierarchical connections.

Failure handling, when a design doesn’t work, is a modified form of dependency-

directed backtracking controlled by suggestions and failure-handling advice. The user can

be a knowledge source for failure handling, as well as for other stages of the program.

TRANSFORMATION. In the transformational process, each step starts with a

design state and produces another design state of the same degree o f completeness. A

portion of the design structure is replaced with a different substructure. This process may

operate on more than one component at a time and is used effectively when the design

cannot be easily decomposed. An appropriate application is a design that has tightly

coupled subcomponents.

IMPLEMENTATION ISSUES. Expert systems developed for design applications

must address the design methodology. They require the integration of large amounts of

intuitive knowledge, judgment, and experience, as well as quantitative tools. They involve

cooperative problem-solving with multiple experts, which can be a set of logically or

physically disjoint knowledge sources communicating through a blackboard. Complex

design is characterized by a hierarchical model; the design proceeds from a simple,

approximate model to increasing complexity, realism, and reliability. The hierarchy of

abstraction is from global to detailed design. The consequences o f design decisions cannot

be predicted until the design has progressed considerably. Redesign is inevitable, thus

scheduling of subproblems for redesign is a concern.

Spatial relationships are necessary parameters for the designer and are not easily

approximated symbolically or qualitatively. Hybrid systems can effectively bridge between

the symbolic and numerical domains. Other implementation considerations are associated

with the user interface. The interface should differentiate between novice and expert users

and provide an effective means of communication with the user. (Allen et al. 1987,98)

EXPERT SYSTEM IMPLEMENTATIONS: DESIGN APPLICATIONS

A discussion of expert systems used in selected design tasks illustrates the current

state of knowledge-based tools in engineering design applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

36

STRUCTURES.

SACON is a consultant for structural engineers on the use of the finite element

analysis program MARC. SACON identifies the analysis class of the problem and

recommends specific features of the MARC program to activate. SACON is a backward

chaining, rule-based system implemented in EMYCIN. (Bennett and Engelmore 1979)

HI-RISE addresses the preliminary structural design of buildings. HI-RISE

configures and evaluates several alternative structural systems for a given three-dimensional

grid. A combination of frame-based and rule-based reasoning is implemented in PSRL, a

language developed at Camegie-Mellon University. Rules in PSRL are expressed in an

extension of the OPS5 language syntax; a LISP-based declarative formalism is used to

represent the structured objects. HI-RISE is an early application exploring the use of

expert systems for design problems. (Maher and Fenves 1984)

Composite Design Assistant coordinates access to a database manager for material

properties and to analysis codes for design of sandwich panels. CDA is written in

PROLOG, while the interfaces to the databases and analysis codes are written in

FORTRAN. (Zumsteg, Pecora, and Pecora 1985)

BEADS, a prototype Building Envelope Analysis and Design System, assists the

designer in selecting materials and constructional systems. A knowledge base containing

information on performance requirements and constraints from building codes is interfaced

with a database of material properties. BEADS is implemented as a framed-based system

using Knowledge Craft. (Fazio, Bedard, and Gowri 1989)

FRAMEX is an integrated system for simulating the design process o f rectangular

multistory steel buildings, using numerical processing, symbolic processing, and database

management FRAMEX is implemented as a rule-based system, using Personal Consultant

Plus, with graphical user interfaces and interfaces to analysis software written in Turbo

Pascal. (Adeli and Chen 1989)

IBDE, Integrated Building Design Environment is a prototype environment of

processes and information flows for the vertical integration of architectural design,

structural design and analysis, and construction planning. The processes are knowledge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

37

based expert systems using declarative or rule-based knowledge representations:

architectural planner ARCHPLAN, space planner for service core CORE, structural system

configurer STRYPES, structural layout and approximate analysis system STANLAY

component designer SPEX, foundation designer FOOTER, and construction planner

CONSTRUCTION PLANEX. A blackboard architecture is used to coordinate

communication between the processes, and the global information is organized in an object

oriented programming language. (Fenves et al. 1990)

EXPERT-SEISD is an object based rule system for the preliminary design of beam

and plate components. The system consists of a design module and a knowledge

acquisition module for updating and/or expansion of the knowledge base and database.

EXPERT-SEISD is implemented in GCLISP, a PC version of Common LISP developed by

Gold Hill Computers, Inc. (Umaratiya and Joshi 1992)

COKE, Construction Knowledge Expert, provides feedback on the constructability

of the structural design of a reinforced concrete building structure. COKE reasons about

the geometrical and topological model of a designed facility and provides construction input

for the structure. COKE incorporates the data from AUTOCAD with Kappa PC to build a

symbolic model of the project’s structure. The system links the requirements of

construction methods with structural design decisions to determine the constructability of a

design. (Fischer 1993)

STANDARDS.

SPECON aids the structural engineer in checking structural steel elements for

conformance with the AISC Steel Design Specification. The essential difference between

SPECON and other expert systems is the flexibility provided to the user to alter numerical

values of design parameters until the hypothesis is satisfied. An explanation module

informs the user how certain deductions were made or why a particular question was

asked. SPECON is a backward chaining production system, implemented in LISP and

OPS5. (Sriram, Maher, and Fenves 1985,5-6)

SICAD is a rule-based approach for checking designed components for

conformance with applicable standards. SICAD integrates conformance checking with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

38

procedural programs for structural analysis, database management, standards, and

synthesis components. SICAD, a hybrid system incorporating a blackboard architecture, is

implemented in POLO, a FORTRAN based language translation facility and comprehensive

engineering database manager with an associated analysis package. (Lopez, Elam, and

Reed 1989)

HyperLRFD is a prototype system developed to evaluate the feasibility and

practicality of a unified Object-Logic model for the representation of design codes and the

processing of design standards. HyperLRFD incorporates parts of the AISC Load and

Resistance Factor Design (LRFD) specification and performs conformance checking and

component design. The organizational aspects of the design standards are represented with

an object-oriented paradigm while the reasoning mechanisms for the design are

implemented in logic programming. HyperLRFD is implemented in PROLOG++ (object-

oriented extension o f PROLOG) and uses HyperCard (Hypertext software for Macintosh

computers) to implement the user interface; HyperLRFD interfaces to an Oracle relational

database system and Excel spreadsheet software. (Yabuki and Law 1993).

MECHANICAL.

VEXPERT designs standard V-belt drives. VEXPERT was implemented to

demonstrate the design-evaluate-redesign architecture. A design algorithm is used to obtain

an initial design from problem specifications. Utility-decision algorithms are used for

analysis and acceptability. VEXPERT is written in LISP, uses OPS5 production rules, and

a blackboard implementation scheme. (Dixon and Simmons 1984)

XENIF designs aluminum extruded rectangular heat fin arrays for natural

convection heat transfer. XENIF was implemented to demonstrate the design-evaluate-

redesign architecture, based on dependencies, or relationships, between design goals and

design variables. XENIF is written in DELPHI, a General Electric proprietary expert

system language, and uses rules written in LISP. It uses FORTRAN utilities for analysis.

(Kulkami etal. 1985)

AIR-CYL is an application of a general purpose design expert system, designing air

cylinders for a given set of requirements. It was implemented as a demonstration of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39

hierarchically structured system with plan selection for routine design. AIR-CYL was

developed using the task-level DSPL language, Design Specialists and Plans Language,

which is based on a LISP dialect. (Brown and Chandrasekaran 1986)

PRIDE designs paper-handling systems inside copiers and duplicators, organizing

the knowledge as design plans. The plans decompose the problem into simpler parts. A

problem solver executes these plans and uses dependency-directed backtracking with an

advice mechanism to handle constraint failures. (Mittal, Dym, and Moijaria 1986)

DPMED selects design parameters for mechanical primitives such as gear-pairs, v-

belts, bearings and shafts. DPMED incorporates rules for selecting materials and critical

design criteria, and a database of standard values of design parameters. DPMED uses

Refinement + Constraint Propagation + Parameter Selection. As each sub-module is

designed, constraints are propagated to the other sub-modules to guide their design.

DPMED was implemented in KEE, an object oriented environment (Ramachandran,

Shah, and Langrana 1988)

A prototype expert system for the gating design of an investment casting process

incorporates a “design-with-features” approach. The prototype uses an object oriented

structure, implemented in KEE, to manipulate features for geometric reasoning and

interfaces to the CAEDS solid modeler. Communication between the systems is through

Common LISP. (Chung et al. 1988)

XCUT is a feature language which generates process plans for the production of

machines parts. XCUT couples rule-based and object-oriented programming techniques

for automatic classification of machine features. (Hummel 1989)

MEFDES, Modular Element Fixture Design Expert System, interfaces a 3-D CAD

system (ME30) with a feature recognizer, which analyzes the part geometry and extracts

machining features, to determine fixture setups for prismatic parts. The rule / frame-based

system is implemented with Nexpert Object, an expert system shell, (kumar, Nee, and

Prombanpong 1992)

An integrated system combining conventional expert system methodology with

operations research decision-analysis techniques has been applied to material selection in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40

automobile bumpers by Thurston (1993). The heuristic rules are separated into two

categories: subjective rules, which embed assumptions about balancing conflicting design

objectives and user preferences, and objective rules, comprised of factual information and

which do not typically vary between designers. The objective rule base is used to identify a

set of design alternatives that satisfy minimum performance requirements by eliminating

those alternatives not falling within specified design parameters and configuration

constraints. A user manipulated utility function, incorporating multiattribute utility

analysis, then evaluates and ranks each alternative. The knowledge base was constructed

in OPS5, and the utility function expert system module was written in Common LISP.

A system for parametric design and analysis of a family of parts with a specific

focus on gas turbine nozzles has been developed with Smart Model, a knowledge-based

engineering system from ICAD, and integrated with software utilities developed by General

Electric. These utilities include a geometric modeling utility, TAGUS; an automatic 2-D

mesh generator, QUADTREE; and a lofting type mesh generator for extruded components,

EXTREME. The Smart Model knowledge-based system uses an object-oriented

framework to represent the design and manufacturing information as part of the complete

product definition of parts, assemblies, and systems. (Saxena and Irani 1993)

ALPR.0 incorporates design compatibility analysis, which ranks manufacturing

processes based on feasibility for the basic geometry, material, and production

requirements of components, with normalized cost analysis. The prototype addresses

aluminum processes: extrusion, sheet forming, forging, die casting, permanent mold

casting, sand casting; coupled with the secondary processes of bending and machining. An

object oriented representation is used for the capability data; the program uses HyperCard

as a front-end, PROLOG for logic-based analysis, and Excel for cost calculations. (Yu et

al. 1993)

INJECTION MOLDING.

IMPARD evaluates designs of injection molded parts based on manufacturability

criteria such as wall thickness, comer radii, boss and hole dimensions, melt flow length,

taper angles, and draft angles. IMPARD interfaces to the GeoMod database, a solid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

41

modeler developed by SDRC. Primitive features are input by the designer and used for

visual displays and design evaluations (Vaghul et al. 1985)

A prototype knowledge-based synthesis system for injection molding is presented

by Kim and Suh (1986). It combines a rule-based system with a cavity filling simulation

program. Theoretical models predict the moldability of the design and the mechanical

performance of the molded part The user interacts with the design loop to synthesize

designs in terms of gate location and molding conditions. The design is evaluated for

moldability and strength. The prototype was implemented using EXPERT.

GERES is an expert system for selecting injection-molded resins based on pre-

design application information. GERES requests nontechnical, symbolic design attributes,

prioritized by the user, to guide the material search. The program selects technically

feasible resins and ranks the selections by cost; the program also “relaxes” non-critical

needs to find economically feasible alternatives. GERES is implemented in Delphi, a GE

proprietary product, and uses rules, object-attributes-value triples, and LISP procedures.

(Nielsen, Dixon, and Simmons 1986)

AMDS, Automated Mold Design System, integrates the Moldflow analysis

program, features database, and iterative redesign to automate the design of injection

molds. The features database represents the part and the feed system. The quality of the

design is based on performance parameters. (Irani, Kim, and Dixon 1989)

IMCE, Injection Molding Cooling Expert, is a hybrid expert system for the design

of the cooling system for injection molding. IMCE uses the heuristic-depth-first searching

algorithm for redesign. An interactive graphics program is used to create/edit the two-

dimensional geometric model, and the numerical model. The cooling process for the

numerical model is analyzed. Databases contain material properties, cooling rules, and data

for the analysis programs. The user can interact with the redesign stage to modify the

design variables. IMCE was developed in Common LISP under the expert system shell,

KEE. (Lee and Kwon 1989)

Dennis Pearce developed an expert system to estimate the cost and configuration of

injection molds for plastic parts. (1989)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Ishii, Homberger, and Liou (1989) have developed an expert system prototype to

evaluate a candidate design using design compatibility analysis among user requirements,

process constraints, and the part design. Suggestions for improving the design are

presented both graphically and in text format The prototype uses DAISIE (see the next

section) as a platform for the compatibility analysis and is implemented in PROLOG with a

HyperCard user interface.

GENERAL PURPOSE.

GEPSE is a General Engineering Problem Solving Environment GEPSE is an

object network language that simplifies the construction of object and rule bases. Other

features are function libraries, user interface packages, and a facility for meta-level control.

GEPSE is a forward chaining system, and is implemented in C. (Chehayeb et al. 1985)

KADBASE is a knowledge-aided database management system prototype. It is a

flexible interface for multiple databases and knowledge-based systems to communicate as

independent, self-descriptive components within a loosely coupled distributed system.

KADBASE provides the mechanism to develop a distributed, integrated CAD system; it

uses a frame representation scheme and forward and backward chaining inferencing in a

blackboard model. KADBASE is implemented in Franz LISP. (Rehak and Howard 1985)

DOMINIC I performs design by iterative redesign in a domain independent

environment, using a hill climbing algorithm. The class of redesign problems for

DOMINIC I are those that are intellectually manageable and solvable without sub-division

into smaller parts. DOMINIC I contains a knowledge acquisition module and is

implemented in Common LISP. (Dixon et al. 1986)

DAISIE, Designer’s Aid for Simultaneous Engineering, uses design compatibility

analysis to evaluate a conceptual mechanical design for compatibility with various life-cycle

issues. The knowledge bases represent issues such as functionality, esthetics, and

manufacturability, important in mechanical design. The system evaluates the design while

the designer makes tradeoffs and the final decisions based on suggestions from the system.

DAISIE is a shell for mechanical design and is implemented in an object oriented

environment using PROLOG and HyperCard for the user interface. (Adler and Ishii 1989)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43

IDS, Intelligent Design System, is an integrated design for manufacture

environment that advises the user on the feasibility of a ”design-with-features” approach.

IDS is based on a CAD system and is integrated with an expert system and a database

management system which uses three distinct classifications of information: object-

oriented CAD data, a design catalog, and a knowledge base of rules and heuristics. IDS is

implemented in the C programming language and interfaces to a CLIPS expert system shell

and an Oracle database management system. The interfaces are written in the C

programming language. (Miller and Colton 1992)

IES, Integrated Engineering Shell, is a framed-based expert system shell

incorporating a blackboard architecture and a database management system. IES provides

backward chaining, forward chaining, and hybrid chaining inferencing strategies. IES is

implemented in the C programming language. (Sakthivel and Kalyanaraman 1993)

ACL, Agent Communication Language, is an agent-based framework for the

development of integrated facility engineering environments. The design agents, various

software programs for design and planning systems, communicate design information to

facilitators in a federation architecture having no central database. Messages, based on

first-order predicate logic, are used to communicate information. (Khedro, Genesereth,

and Teicholz 1993)

KASE, Knowledge Assisted Software Engineering, is a set of tools for software

analysts and designers at the architecture level. KASE captures the various knowledge

needed for design and applies the knowledge to aid knowledge engineers in automating

design activities. KASE is implemented in a blackboard architecture for a class of tracking

problems, in which the task is to identify and track objects in space based on signal data.

(Nii 1994)

RESEARCH AREAS

The current expert system paradigm does not suffice for real world engineering

problems. The early expert system implementations for derivation problems are not

directly extensible to formation problems. Several systems have been developed for design

problems; however, these implementations have also exposed limitations in the current

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

44

methodologies. Some specific areas that need further research are (Lu 1986, 14 - 18):

° knowledge acquisition

• inductive reasoning

• limited, narrow problem domains

• integrating heuristic and deterministic knowledge (engineering models, physical

principles, and governing equations)

• interactive user interfaces

• use of system shells for domain-specific, task-independent applications (design

shell, diagnosis shell, planning shell, etc.)

This research focuses on the last three areas.

SUMMARY

Early expert systems addressed derivation problems, i.e., they look for a path that

leads to a specified goal, which exists in the knowledge base. The expert systems

discussed in the previous section differ from these early systems since they address

engineering design problems, problems that require a diversity of knowledge bases for

complex engineering systems, where the solution is not already in the knowledge base.

However, most o f these expert systems are either implemented in programming languages,

requiring many man-months of development effort, or in programming environments

requiring many months of training before a developer gains the requisite knowledge to use

the tool effectively. This research is cognizant of the limitations of these implementations,

particularly those most closely related, and investigates the use of expert system shells for

design problems.

Expert systems for engineering design applications require an integration of

heuristic and deterministic knowledge. They also involve cooperative problem solving

using multiple experts. Hybrid systems have proven to be valuable tools in implementing

these engineering systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5

PROTOTYPE DEVELOPMENT

The diversity of the knowledge in engineering problem solving and the complexity

of engineering systems lead to many difficulties in applying expert systems to design

problems. The knowledge is a combination of heuristic information (design rules and

guidelines), and deterministic knowledge (engineering models, scientific principles,

governing equations, information about materials and specifications, and analysis data from

existing algorithms). The knowledge is provided by multiple sources, requiring a variety

of specialized knowledge representations, which need to be integrated for fully functioning

systems.

Tools currently exist that are appropriate for developing expert systems for complex

tasks such as engineering design. Expert system shells, in particular, offer rich

development environments with interfaces to programming languages, access to databases,

and graphical capabilities to assist in developing user interfaces. In order to test the

capabilities of various KBES shells, a prototype system should be constructed to categorize

the knowledge used in design processes and develop representations for that knowledge.

The prototype should integrate the knowledge sources with existing databases and analysis

software and demonstrate graphical user interfaces for explanation and knowledge

acquisition facilities, as well as interactive capabilities for user participation in the design

process.

Designing an injection molded plastic part is a representative engineering design

problem; a subproblem, the design of a cantilever snap joint to join two components, was

chosen for a detailed prototype implementation. The knowledge structures required for a

snap joint are typical of the structures in a general engineering design problem; the

prototype involves a materials database, design specifications, equations for analyzing the

design, and heuristics or rules of thumb.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

46

CHOOSING AN EXPERT SYSTEM BUILDING TOOL

A range of tools with varying levels of support for knowledge acquisition,

explanation facilities, (interactive) graphics, uncertainty management, and other features

influencing the ease of use of the expert system are available to the expert system

developer. The expert systems that have been developed for design problems have

generally been implemented using programming languages or programming environments.

These tools are relatively difficult to use and are practically useless to the typical engineer

with limited programming skills. Consequently, the use of these tools is limited to

knowledge engineers having a thorough understanding of knowledge representation

schemes and inference mechanisms.

Expert system shells, at the high end of the available tools, facilitate rapid

development of expert systems because they incorporate specific knowledge representation

schemes, inference mechanisms, and control. Since they often provide interfaces to

existing databases and to procedural languages, the developer can interface the expert

system with solid modeling systems and a multitude of existing analysis software (such as

finite element modeling). Expert system shells typically offer a graphical interface and an

explanation facility to encourage user acceptance. Another useful feature to look for in

expert system shells is a knowledge acquisition facility to help ensure that the expert system

will continue to evolve and will continue to be used. Most shells provide an interactive

interface which allows the user to participate in the process, thus serving experts as a

design aid and novices as a tutor.

Several shells currently exist that are appropriate for developing expert systems for

complex tasks such as engineering design: Kappa PC, Level5 Object, Concept Modeller,

G2, and Smart Model.

Kappa PC (IntelliCorp $3500) offers object-oriented capabilities coupled with a

forward and backward chaining rule system, procedural language programming, dynamic

presentation graphics, graphical debugging tools, and intelligent links to other applications

and databases. Kappa PC is based on KEE.

Leve!5 Object (Information Builders Inc. $995) is a hybrid tool which features

object-oriented capabilities and includes such functions as forward and backward chaining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

47

inference engines, relational database models, CASE facilities, a graphical toolbox for

building user interfaces, and graphical debugging tools.

Concept Modeller (Wisdom Systems, $65,000) creates 3-D solid models using

parametric design capabilities and maintains engineering and manufacturing information,

such as weight, cost, list price, and material type, in object-oriented databases to provide

part summaries, bill-of-material reports, and data for finite element analysis programs.

G2 (Gensym Corp., $10,000 - $40,000+) provides an applications environment for

real time processes using a frame-based knowledge representation system with extensions

for object-oriented programming. Other features of G2 include interactive windows,

graphics, and animation; a structured English editor; functions and procedures; and a

dynamic simulator.

Smart Model (ICAD Inc., $35,000 - $150,000) incorporates rules to extend the

traditional CAD programs based on interactive geometric modeling systems. These rules

are used to create a representation of a part that includes product structure and dependence

on other parts; physical and geometric specifications; material, manufacturing and cost

constraints; lead times; and manufacturing process plans. The system also includes a full-

surface modeling system and features for automatically performing and displaying design

iterations, relating the design knowledge base to manufacturing or processing knowledge

bases, and transferring data from other CAD systems.

All five tools offer rich development environments with interfaces to programming

languages, access to databases, and graphical capabilities to assist in developing user

interfaces. The first two -- Kappa PC and Level5 Object — are PC tools, while the other

three are workstation tools. Kappa PC is a promising tool, principally because the

relatively low cost makes the system accessible for most implementations and it offers a

migration path to the workstation environment. Other important advantages are the object-

oriented data representation scheme, C programming capabilities, and a large inventory of

graphical tools. Both forward and backward reasoning are available, using either depth-

first, breadth-first, or best-first search algorithms. IntelliCorp also offers a similar, but not

compatible, workstation product — ProKappa. The object portions of the knowledge can

be ported with minimal effort, but the rales and other interface portions require conversion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

48

from one syntax to another. Level5 Object, available at an even lower cost, was conceived

and implemented as a procedure-based tool for database applications. Since the object-

oriented features are add-ons, and are not an integral part of the shell, Level5 Object is not

as viable as Kappa PC for object-oriented applications. Kappa PC was evaluated for its

ease of use in design applications, its capabilities for interfacing to existing software and

databases, and the tools for developing sophisticated user interfaces.

KAPPA PC DEVELOPERS ENVIRONMENT

Kappa PC offers the developer a rich environment of development tools for

viewing and modifying elements, building customized displays, and debugging the expert

system. These tools include graphical representations of the knowledge elements, editors

and syntax checkers, and functions to read and write ASCII files so the developer can

access the myriad of software available in DOS and WINDOWS environments.

Among the development tools are the knowledge editors used to define, examine,

and modify the seven knowledge elements — classes, instances, slots, methods, functions,

rules, and goals. Kappa PC also provides graphical presentation tools, from the

Activelmages™ package, to facilitate user interface development and enhance the interface

features. The tools (Figure 5.1) used to display static information and current information

stored in single and multiple valued slots include options for text, transcripts or boxed

information, line drawings, bitmap diagrams, buttons, state boxes, meters, sliders, user-

Images

Figure 5.1. Graphical Presentation Tools

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49

edited text, and line plots. Another tool, dialog boxes, provide menus to direct user

interactions, post messages, and forms to enter information into knowledge bases.

An alternative development environment to the knowledge editors is the KAL

interpreter, a mechanism for testing and executing expressions written in Kappa PC’s

programming language KAL. The interpreter includes a library of 240 built-in functions to

create, access, and modify knowledge elements; evaluate math, logical, and string

expressions; control blocks of expressions; manipulate lists, files, databases, and

spreadsheets; control knowledge processing; and control the end-user graphical screen

interface. User defined functions, written in C to create new functionality, control

processing, and combine individual actions, can be tested in the interpreter and added to the

knowledge base as functions.

Several tools provide fairly extensive debugging capabilities: an object browser,

rule relations browser, an inference browser, and rule tracing. The object browser

provides a graphical view of the hierarchy of classes, instances, and subclasses and allows

the developer to modify objects and their relationships. Instances and subclasses can be

hidden to compact the graphical representation. The rule relations browser graphically

displays the linking relationships between premises and conclusions of rules. The rule

tracing is a dynamic text description of the inference engine’s progress; it lists the rules that

the inference engine invokes and the changes to selected slots in the knowledge base due to

the reasoning. Thus the developer can see how the system generates new conclusions and

can trace the source of errors in the knowledge base. The inference browser graphically

depicts the reasoning given by rule tracing.

APPLICATION: CANTILEVER SNAP JOINTS

Snap joints are a simple, economical, and rapid way of joining two different

components. All snap joints have a protruding part of one component, e.g., hook, stud or

bead, which is deflected briefly during the joining operation and catches in a depression

(undercut) in the mating component (Figure 5.2). After the joining operation, the joint

should return to a stress-free condition. The joint may be separable or inseparable

depending on the shape of the undercut. The force required to separate the components

varies greatly according to the design. Two important factors to consider in designing snap

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

|ai
ea

F«
i!®

sa
BB

ii»
fa

 p
.aif

fl
»»

«»
.'

50

joints are the mechanical load during the assembly operation and the force required for

assembly. (Miles 1992)

Cantilevered Lug

Cylindrical Interference

Figure 5.2. Representative Snap Joints

A typical cantilever snap joint is illustrated in Figure 5.3. Recommended design

procedures are to vary the finger so either the thickness (h) or width (b) tapers from the

root to the hook. Good results are obtained by reducing the thickness linearly by a factor

of 1/2 from the root to the hook, or by reducing the width to 1/4 from the root to the hook.

(Reiff 1991, 60)

return angle, a deflection force, P

width, b
assembly force, W

undercut, y
thickness, h

length, I
lead angle, a

Figure 5.3. Cantilever Snap Joint Geometry

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

51

Cantilever snap joints are predominantly loaded in bending. From classical beam

theory, the following equations apply to cantilevered beams with constant, rectangular

cross sections:

Stress: c = where M = PI

Deflection: y =
3EI

I = and c = ̂12 2 .

For a cantilever snap joint (Figure 5.3), the following governing equations are then

derived from the above equations:

Strain: e = \ . (—
2 \\2

Deflection Force: P =
6 1

Assembly Force: W = P
(i + tan a
1 - jitan a

Where:
s strain in outer fiber at the root

y deflection or undercut

1 length of cantilever arm

h thickness at root

b width at root

Es secant modulus

|i static coefficient of friction

a angle of inclination (either lead or return)

The calculated strain is compared to the allowable strain. For amorphous materials

the allowable strain is approximately 70% of the yield strain; the working value for strain

should be limited to 60% of the allowable strain when the snap joint is to be separated and

reassembled several times (Miles 1992,12). For example, if the elongation at yield is

6.5%, then the allowable strain is 0.0455 for a single assembly or 0.0273 for multiple

assemblies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52

KNOWLEDGE REPRESENTATION

A variety of knowledge is required in designing a cantilever snap joint. The

cantilever configuration and geometry must be specified, either from geometrical

constraints of the part or from design specifications and rules. A material must be selected

for the part, and the appropriate material properties must be available to the designer.

Finally, an analysis, using governing equations and material properties, will determine the

structural integrity of the snap joint Economic factors are generally considered in a design

problem but were not included in the prototype since their categorization is similar to that of

design rules.

OBJECTS.

The knowledge characterizations of an injection molded plastic part can be

effectively represented in an object-oriented environment In an object-oriented program,

the data is represented by objects typified by two types of information: information

describing the objects (classes, subclasses, and instances and their attributes) and

information specifying what the objects can do (methods). For the prototype design

problem, classes are established for three different knowledge types: materials, features,

and the design solution; Figure 5.4 graphically represents the object hierarchy. In Kappa

PC instances are related to a class by dashed lines; thus, the material class has six

instances. A solid line indicates a relationship between a class and its subclasses; the snap

joint class has three subclasses — cantilever, torsional, and annular -- providing future

extensions for torsional and annular snap joints.

. G /absI
/]lmaqe|

BayblgndFR. J43S
/ . CalibreSOO. JO

Root-----------
/ ̂ m a te ria !------

— design

M egnum 36St
NoryfM SO

V P ulse172S
"• ZytBfJOJ~Diy.

/nominal wall

i

___ /
^^-projections v ■■ snap_joint----

-depressions ^ r ib s

.-cantilever
<T torsional

^ a n n u la r

Figure 5.4. Object Hierarchy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

53

Methods are attached to the classes or instances and associate behaviors with these

objects. Generally algorithmic processes, involving few conditions in a predetermined

series of steps are better suited to implementation as methods than as rules.

A representative sample of the materials and the properties that can be obtained from

the material database is given in Table 5.1.

Table 5.1. Materials

Name:
Type:

CALIBRE 800-10
polycarbonate resin

MAGNUM 3661
ABS resin

PULSE 1725
polycarbonate

/ ABS resin
Tensile Stress @ yield (psi): 8,700 5,000 8,400
Comp. Stress @ yield (psi): 14,000 6,900 11,000
Elongation @ yield (%): 6.5 2.3 4.0
Flexural modulus (psi): 360,000 340,000 400,000
Coefficient of Friction:

Plastic to Plastic .55 .75 .65
Plastic to Metal .45 .65 .55

Each class, subclass, or instance is characterized by various slots; for example,

each material instance has the following properties: tensile stress, allowable compressive

stress, elongation at yield, flexural modulus, and coefficients of friction for plastic on

plastic or metal. A listing of the classes, instances, and slot values is available in

Appendix A.

METHODS.

The knowledge necessary to design a cantilever snap joint is the analysis

information. In a large design problem, tools such as finite element analysis are required to

predict the performance of the design. In a relatively small design problem like a cantilever

snap joint, the beam theory governing equations in the previous section will adequately

predict the cantilever performance. Methods attached to the design solution class use the

governing equations to calculate the strain and the assembly forces (listed in Appendix A).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

54

RULES.

Experience with injection molded parts has resulted in a host of design rules

applicable to a variety of situations. These rules guide the material selection and the

specification o f features such as draft angles, surface textures, comer radii, and wall

thicknesses, all affecting the moldability of a part, its structural stability and appearance,

manufacturability, and the total production cost. The knowledge for the prototype system

was acquired from multiple “experts” — design manuals produced by plastics

manufacturers: Borg-Wamer, Dupont, and Miles; and plastics designers: Beall and

Palsulich.

A cantilever snap joint is a projection, and therefore rules pertaining to projections

are appropriate. Some representative rules for projections are:

• length should be less than three times the nominal wall, to avoid molding
problems

• thickness should be within 50% to 70% of the nominal wall, to avoid sink marks
• ratio of length to thickness should be less than 10, to avoid buckling
• ratio of thickness to the width should be 1:4, slender beam theory assumption
• deflection angle should be less than 10°, slender beam theory assumption

and rules specific to cantilever snap joints are:

• ratio of length to thickness is 5.4:1, determined from a random sampling of latch
geometries

• undercut should be less than one-half the length
• the lead angle should be between 10° and 35°
• the return angle should be greater than the lead angle

• for a self-locking joint, the return angle should be greater than (90° - tan_1|i)

• if the strain is excessive, reduce the undercut or increase the length

The first seven are implemented as methods (listed in Appendix A), attached to the

cantilever class, to calculate the geometrical data and assign the values to the slots — length,

thickness, width, and undercut (The other slot values are specified through the user

interface.) The remaining logical relationships are implemented as IF-THEN rules.

Pseudocode examples are given below, and the complete rules are listed in Appendix A.

If (e > allowable strain)
then reduce undercut and recalculate design values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

U
asi

g
iHi

&i
jSB

 is
 C

f H
llf

fil
i

B K
UM

SS

Er
cS

HB
iM

i™

55

If(e > allowable strain)
then increase cantilever length and recalculate design values.

If (W > allowable assembly force)
then increase cantilever length and recalculate design values.

If (W > allowable assembly force)
then reduce angle and recalculate design values.

If (lead angle <10° or >35°)
then change angle and recalculate design values.

If (return angle < lead angle)
then change return angle and recalculate design values.

If (joint self-locking & return angle < 90° - tan-1 p.)
then increase return angle.

If (joint not self-locking & return angle > 90° - tan’1 p.)
then decrease return angle.

USER INTERFACE

In Kappa PC, the user interacts with the expert system application through the

SESSION window (illustrated in Figures 5.5 and 5.6). The user selects an injection

molding feature (Figure 5.5) and then chooses options to initialize or perform the design by

using buttons.

Nominal Wall

Projections

Depressions

Snap Joints

Ribs

Cantilever

Torsional

Annular

Figure 5.5 Feature Selection

In Figure 5.6 the buttons are located to the right of the diagram and allow the user

to specify the initial design configuration, change the resulting geometry, select the

material, and perform the design operation. A small number of functions were written to

control the user interface and are listed in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

IS
aU

ia
H

S
aa

ff
iB

ll
S

B
aJ

B
lf

fl
as

sK
JS

K
re

as
sB

sa
i*

1

56

Snap Joint Demonstration

<S*f l«ct lo t f o r a , P-
•tMdeiesi* k / b L

Configuration

Change Geometry

Select Material

Design

Reset

Stop

Snap Joint Configuration Material Properties Design Specifications

Figure 5.6 Design Interface

To initialize the design geometry, the user clicks the CONFIGURATION button

| which executes a method attached to the cantilever class. This method asks the user toI
| specify the initial design configuration (Figure 5.7) and applies design heuristics to
i

generate an initial geometry for the cantilever. For some entries, the user is provided a list

of appropriate responses, which is obtained by clicking the arrow on the right hand side of

the menu (e.g., “Select component types” prompt). Kappa PC also checks the values

entered by the user and limits the entries to ranges specified by the developer.

!
ia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57

Initial design configuration

Satectlypeofgiomuby constant

S elect number o f essem bSes

Select component types

Enter nominal wall liickM M

Enter lead angle

Enter return angle |y g

Is snap setflocfciegT yes

Enter mmdtnuni length of
cantifavor 0.750000

Enter maximum mating force Iq

Enter maximusi separating force q

| plastic_plastlc I*
plastlc_plasUc
plasOc_metal

25

Ok Reset

Figure 5.7. Initializing Cantilever Configuration

The user can change the initial geometry by clicking on the CHANGE GEOMETRY

button, which executes another method attached to the cantilever class. This method

provides the user an opportunity to change any, or all, of the geometry data (Figure 5.8).

Geometry data

Enter length

Enter width

Enter thickness

Enter undercut

Enter lead angle

0.675000

0.500000

0.125000

0.056448

35

Enter return angle

Ok Reset

Figure 5.8. Entering Geometry Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

Finally, the user makes a material choice by clicking the SELECT MATERIAL

button. This action provides a list of all the material instances, and asks the user to select

one. Each of the actions — CONFIGURATION, CHANGE GEOMETRY and SELECT

MATERIAL — also outputs the resulting values, or properties. Tne user can review the

output and continue to make changes, enabling an expert designer to interact with the expert

system to specify a configuration that is close to meeting the design specifications. A

novice can merely use the initial configuration generated by the system.

At this point, the user asks the system to perform the design operations by clicking

on the DESIGN button. This activates the inference mechanism, to process the applicable

rules for this design situation. The expert system calculates the strain and the assembly

forces resulting from this configuration and compares these values to the allowable values

for the given material. The system then iteratively alters the geometry until a design

meeting the specifications is reached.

An example design solution is illustrated in Figure 5.9. At this point, the user may

want to make a material change or change the configuration and then ask the system to

Snap Joint Demonstration

iKtlon lorci,

length, L—1 \ lead

1

Configuration

Change Geometry

Select Material

Design

Reset

Stop

S nap Joint Configuration Material Properties D esign Specifications

Cross Section Geometry: constant Material: CoIibreBOO.1 D
Number of A ssem blies: multiple Type: Polycarbonate Strain 0.0269
M aterials: plastic_plastlc Properties 9 73F Allowable 0.0273
SstH ocking: y e s T ensile S tress Q yield 8700 Meeting F orce 34J2
Length 0.750 Max 0.750 Elongation O yield 6.5
Width 05C0 Flexural Modulus 380000 Deflection F orce 16.8
Thickness 0.125 Comp S tress G yield 14000
Undercut 0.081 S tatic Coefficient of Friction Feature d a ta written So
Ang!es:Lead 35 Return 75 P lastiq_Plastic 0.55 program file: fead a ta
Force:Moting 0.0 S ep . 0.0 Plastic.Mot&J 0.45

*1 1 !■» *1 1 !■* •■I l I -

Figure 5.9. Design Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

produce a new design. This approach involves the user in the final design, providing an

analysis tool to the expert designer while incorporating his experience. It also provides a

design tool for the novice, producing a part which meets the design specifications.

Several examples of the design process are given in Appendix B. These examples

were generated using the rule tracing feature of Kappa PC and illustrate the way the rules

are applied in solving the problems with different design constraints. Different solutions,

or “good” designs, are produced for the various configurations since the rules axe applied

in different sequences. Another tool for examining the reasoning process of the prototype

system is the explanation facility, which explains how slot values are formulated in the

design process. However, the explanation facility in Kappa PC was not activated for the

prototype expert system. To include this facility in the expert system requires that

explanations for each rule be entered in the comment field of the rule. Essentially the same

information is available in the rule traces, but the explanation facility is more easily

interpreted by a user.

INFERENCE STRATEGIES

The inference engine is responsible for searching the knowledge base and

recommending a solution to the proposed problem. Specifically, the inference engine must

decide where to start the inference process, which rules to fire when more than one is

triggered (conflict resolution), and how to conduct the search, all in an effective and

efficient manner.

Kappa PC provides a variety of methods to handle conflict resolution. Rule

priorities can be assigned to control the reasoning path when more than one line of

inference is possible. Rule sets can be established so only rules relevant to the task being

performed are used, thus providing efficiency and modularity for the developer. And,

Kappa PC provides four options for conflict resolution when more than one rule is eligible

for firing: selective, breadth-first, depth-first, and best-first. The selective option is not

exhaustive; only the first rule associated with the asserted facts is tested, thus only one

successful path of reasoning is followed. Since the search is not exhaustive, it is more

efficient The remaining options are all exhaustive, finding all possible implications of the

data that initiated the chaining process. The breadth-first option evaluates all the rules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60

associated with the asserted facts, before evaluating the next level of rules. The depth-first

option evaluates one rule associated with the asserted facts and all its consequences, before

evaluating other rules associated with the asserted facts. The best-first option combines

features of the breadth-first and depth-first options, using rule priorities to select the “besf ’

rule to fire next, i.e., it looks at all the rule possibilities and selects the one with the highest

priority.

The two search strategies employed in Kappa PC are forward ~nd backward

reasoning. Forward reasoning, or data driven chaining, proceeds from premises (if part)

toward conclusions (then part). It begins by declaring new facts and proceeds by matching

known facts to the premises of rules. If all the premises of a rule are verified, the

conclusions in the rules are asserted, generating new facts which can match the premises of

more rules. Backward reasoning, or goal-driven chaining, tries to verify a fact, i.e., reach

a goal, by finding rales which can prove the fact, in the conclusions, and then attempting to

verify their premises. The premises in turn become new facts to be verified by other rules.

The same rules can be used in both forward and backward reasoning.

A goal driven, or backward reasoning approach, is normally used in a design

problem. In the cantilever snap joint design problem, a good design, i.e., a solution

meeting the specifications, is defined by:

If (e < allowable strain & assembly forces < allowable forces)

then design is good.

Due to limitations in the early versions of the Kappa PC software, a backward reasoning

strategy did not work. A simple solution to this obstacle was to use a forward reasoning

strategy, incorporating a goal to terminate the reasoning.

The effects of the various conflict resolution options were also examined (see

Appendix B). The order of rale assertion definitely affects the design solution and can

result in a design which is over-corrected for the design constraints. This occurs for

several reasons. A fairly large arbitrary increment was selected for the undercut, cantilever

length, and angle modifications, which over-corrects the design solutions. Once a

constraint is met, the application of additional design rules can result in further reductions,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

61

or over-corrections. However, additional design rules can be added to the expert system to

deal with both of these situations.

PROTOTYPE EVALUATION

Expert systems are generally validated by comparing the performance of the system

with that of an expert Formal measures, both quantitative and qualitative, have been

developed to ascertain the effectiveness of an expert system. The prototype expert system

was examined by an injection molding expert designer as well as injection molding

software developers.

The initial validation of the prototype expert system verified that analytical results

of the prototype match results from a commercial software package PD11. Results were

compared by calculating the snap joint undercut deflection for a range of loading conditions

and for the following materials:

ABS DOW Magnum 3661
ABS DOW Pulse 1725
ABS GE B30-0001
ABS Mobay Bayblend
Modified PPO Noryl N l-190
Polycarbonate DOW Calibre 800 -10
Polyamide DuPont Zytel-101
A TV■•IQ

A ^ C U U L /U J L U 1 1 L iN c L L U l tU .

Calculations were also conducted independently to confirm the accuracy of the PD1

program results. Using the same material property data, no significant differences were

noted in the results.

A second evaluation was performed independently by two injection molding

software developers, Mike Craven and Gregg Nicholas1. The evaluators were asked to

address the following features of the prototype: correlation to known design solutions,

procedures for data input, flexibility for altering configurations, design constraints, output

usability and format, and ease-of-use. See Appendix E for a copy of the evaluation

instrument Comments from the evaluators were positive, with only a single suggestion to

1 PDl, an IDES product for Injection Molding Part Design, is an on-line tutorial and interactive design
tool for ribs, cross ribs and snap fits.

2 Integrated Design Engineering Systems, Inc., PO Box 2131 Laramie, WY 82070.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

62

post a busy message on the screen when the system is not expecting input from the user.

This alerts the user to wait for the system to process the information.

An expert designer was then asked to review the performance of the prototype

expert system. Mr. Robert Cramer3, a major contributor to the development of the PD1

program, confirmed that the performance of the system closely matched his expertise. Mr.

Cramer did suggest a modification to the operation / user interface of the expert system to

establish maximum dimensions for a projection which must fit in a constrained location.

Changes to accommodate this modification were relatively easy to accomplish and attest to

the usability of hybrid expert system shells for design problems. The changes were

confined to a single class since similar functions are grouped in the object hierarchy.

The modifications have produced a more responsive expert system that more

accurately reflects design concerns of a plastic part designer. The ability to easily adapt an

expert system to user preferences produces a more useful design tool.

3 Associate Development Scientist, DOW Chemical Company, 433 Building, Midland MI.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6

INTEGRATION OF EXTERNAL KNOWLEDGE SOURCES

In a complex design problem, an engineer typically enlists a variety of computer-

aided engineering tools to assist in the design process. A solid modeling package is often

used to develop a conceptual design and to provide powerful analysis tools; a commercial

database o f material properties can assist in selecting appropriate materials for the product

The prototype expert system resulting from this research can be added to the menu of CAE

tools available to aid the product designer. The system approach to developing a plastic

part, incorporating these tools interactively with a mechanical designer, is depicted in

Figure 6.1.

PROSPECTOR
Material Database

I-DEAS
Solid Modeler

USER

ASCII
files

dBase
files

EXPERT SYSTEM PROTOTYPE

Analysis
Algorithms

Heuristic
Rules

Objects/
Methods

Figure 6.1. System Approach

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The design scenario for this system approach involves a series of steps. The

designer using a solid modeler, e.g., I-DEAS™ (Integrated Design Engineering Analysis

System) available from the Structural Dynamics Research Corporation1, inputs a

conceptual design to meet a set of functional specifications for a plastic part If a snap joint

is required for the plastic part design, the designer invokes the prototype expert system to

determine a set of geometric parameters meeting specifications for the required joint At

this point in the design process, a material selection for the plastic part will have typically

been made; if not the designer can rely on the expert system to incorporate knowledge

contained in an external materials database, PROSPECTOR from IDES2, to assist in

material selection. Since the expert system is interactive, an experienced designer can

influence the parameter generation, based on his/her individual experience. The expert

system, using the knowledge sources interactively with the designer, determines the

feasibility of the conceptual design, and modifies the design, iteratively, until acceptable

design parameters are generated for the snap joint

The expert system shell, Kappa PC, provides the capability for a developer to

interface the expert system to external knowledge sources. Kappa PC interfaces to Lotus®

1-2-3® spreadsheets, dBASE® databases, and external software through built-in functions.

Kappa PC also provides functions to read and write ASCII files which extends interface

capabilities to most software.

Without modification to the solid modeler, real time information exchange between

the prototype expert system and the modeler is not possible. However, the prototype can

effectively communicate with the solid modeler through the Kappa PC functions for ASCII

file exchanges, to share geometry information. In addition to the geometry database, the

solid modeler can also provide analysis tools such as finite element modeling, vibration

analysis, mold filling/cooling analysis and graphical numerical control machining. These

capabilities have not been demonstrated for the prototype expert system, but can be utilized

at any point in the design process since the geometry database resulting from the solid

modeler is common to each of these options.

1 Also available as CAEDS® (Computer Aided Engineering Design System) from IBM®
2 Integrated Design Engineering Systems, Inc., PO Box 2131 Laramie, WY 82070.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65

The material properties for the cantilever snap joint design prototype are entered

from a dBase compatible database, generated from the properties available in

PROSPECTOR. This functionality is incorporated in the prototype system through the

Kappa PC database functions, which map records from a database to objects in the expert

system. This approach augments the expert system with material selection features in

existing commercial software and takes advantage of the database capabilities for

effectively, and efficiently, searching large material databases.

Since only a limited amount of code is required to perform the analysis for a snap

joint, the prototype design embeds analysis capabilities in methods attached to the

knowledge elements. In larger, more complex applications, the developer can incorporate

external analysis programs by using Kappa PC functions to execute external programs and

to pass arguments between the external programs and the expert system. Kappa PC also

provides functions for reading and writing ASCII files to incorporate existing C code into

methods attached to the knowledge elements.

EXTERNAL INTERFACE CAPABILITIES
The ASCn file transfer capabilities of Kappa PC provide a means for passing

parameters to external programs. These capabilities include functions to open/close files,

read characters or words, and write formatted text or internal Kappa PC files (classes,

instances, rules, and functions). Using these functions, the prototype expert system is

interfaced to a solid modeling package. External programs can also be executed from

within Kappa PC, through a built-in function which passes up to three arguments to the

external program.

Built-in functions interface Kappa PC to databases and spreadsheets, allowing

Kappa PC to work directly with database or spreadsheet files. These functions open/close

files, read/write selected data records or fields, and map Kappa PC slots to database fields.

These functions also allow instances in the object-based hierarchy to be generated from the

database information.

Kappa PC is available as a C library, to add intelligence capabilities to in-house

programs; routines can be added to this library and called like any other Kappa PC

functions. A run-time version is available to developers who want to incorporate Kappa

PC into their software.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

66

SOLID MODELING SOFTWARE

The engineer has a host of solid modeling software available to assist with

engineering design tasks. I-DEAS, a package widely used by the mechanical engineering

community, is an integrated package of software tools incorporating a concurrent

engineering approach to mechanical design problems. I-DEAS consists of a number of

“Families” of products including Solid Modeling, Engineering Analysis, System

Dynamics, Test Data Analysis, Drafting, and Manufacturing. These integrated modules

form a fully functional design tool for the engineer.

The Solid Modeling family includes an Object Modeling module which creates

objects either from a menu of primitive solids (blocks, cylinders, cones, spheres) or from

extruding or rotating a profile. These objects can be modified by various construction

operations; complex objects are constructed through Boolean operations to join objects with

each other or to cut them from one another. A geometry database is also maintained, which

can be used for mass and inertia property calculation, interference studies, finite element

modeling, manufacturing, and generating engineering drawings.

The constant cross-section snap joint was modeled in I-DEAS by generating a

profile and extruding the profile to form a solid object (Figure 6.2). The snap joint was

then created as a feature with the following parameters: length, width, thickness, undercut,

return angle, lead angle -- parameters generated by the prototype expert system as a result

of the DESIGN process. (See Appendix D for a listing of the I-DEAS commands to

generate the SNAPJOINT feature.

width
(extruded distance) undercut

thickness

length
— lead angle

return angle

Figure 6.2. Cantilever Snap Joint Object

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

67

The prototype expert system writes these parameters to a file, in I-DEAS program

file format, through Kappa PC built-in functions for ASCII file exchanges. The function

write_feadata accomplishes this information exchange and is listed in Appendix A.

Once the parameters are determined, the designer uses the I-DEAS Model File

module to generate the snap joint object at a specified location. The designer selects the

Program File function, followed by the RUN command to execute the program file

generated by the prototype system. The program file CONSTRUCTS an object from the

SNAPJOINT feature, which is stored in the FEATURES Universal Library file.

The I-DEAS construction commands snap two coincident faces together and then

use various positioning options to properly align the two faces. The designer is asked to

specify the planar faces to be joined (one on the snap joint object and the other on the

plastic part) and then to designate the exact location on the plastic part for the snap joint

object The snap joint object is thus attached to the nominal wall of the plastic part at a

user specified location.

DATABASE SOFTWARE

One problem facing a plastic designer is the best choice of plastic material for a

particular application. Thousands of commercial grades of plastic materials are available on

the U.S. market making it nearly impossible for a designer to be familiar with the many

blended and alloyed materials available. However, software tools exist to assist in

selecting an appropriate material.

Plastic material properties are available in a commercial product PROSPECTOR.

PROSPECTOR uses the capabilities of a sophisticated data management system,

FOXPRO®, to provide query, display, report capabilities, and graphical visualization aids,

i The user interacts with PROSPECTOR to define a subset of materials that meet user

* specifications; data can be viewed in table or chart form to assist in defining the subset

The PROSPECTOR database contains over 18,000 plastic materials, each having

up to one hundred attributes representing general material characteristics, physical,

mechanical, thermal, electrical, and flammability data. The information in the database is

acquired directly from material manufacturers and suppliers and conforms to ASTM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

68

specifications. A data sheet for a sample material, Calibre 800-4, is listed in Table 6.1.

The user can query the database for any combination of the properties on the data sheet,

which are important for a particular application. For example, a plastic part might need to

be transparent and able to withstand high installation temperatures.

PROSPECTOR offers the user two major menu options — Search and Display.

Search allows the user to narrow the number of materials in the working database to only

those of interest The user selects a property to search, which can be either a text field or a

numeric field. If a text field is chosen, the user selects the desired items from a list of all

possible values. The numeric search shows a distribution of the material property to aid in

picking a range of data values for the search.

The Display option provides the user two formats for viewing the searched material

properties. The Data Sheet shows all data for a selected material, while the Data Table

shows selected properties for the working database. The database can be sorted according

to a particular property, or the Locate function can be used to find a material with a specific

property value. The user can then use the Data Sheet to view successive materials and their

properties. Within the Data Table, the user specifies the properties to display for each

material and the order to display the properties.

PROSPECTOR was modified to produce an ASCII report, since PROSPECTOR’S

internal files are encrypted; the report is then used to generate a dBase compatible file which

can be interfaced direcdy to the prototype expert system. A small amount of code

development was necessary to generate a dBase compatible file from the PROSPECTOR

output The program also enters material property data (e.g., coefficients of friction) that

are not available in the PROSPECTOR database. The edit program is listed in Appendix C.

The interface capabilities of Kappa PC were then used to import the material

properties from the database into the prototype expert system. The prototype expert system

creates material instances from the external database and enters the database fields into the

object slots of each material. The object-based hierarchy provides the capability of

automatically generating the instances from the material database and updates the user

interface to reflect the current material database. The function that accomplishes this

interface, loaddb, is listed in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 6.1. PROSPECTOR Data Sheet

69

Trade Name : Calibre 800-4
Manufacturer: Dow Chemical U.S.A.
Generic Name: Polycarbonate

 Property —
-General

Agency Ratings
Appearance
Features

Filler Percent By Volume
Filler Percent By Weight
Filler/Additive
Processing Methods

Recycled
Uses

-Physical
ConL Service Temperature
Glass Transition Tmp
Linear Mold Shrink
Melt Flow
Melt Flow Condition
MeltPt
Specific Gravity
Water Absorption 24 hrs.
Water Absorption @ Equil

-Mechanical
Compressive Modulus
Compressive Strength
Elongation @ Break
Elongation @ "Yield
Flexural Modulus
Flexural Strength @ Yld
Gardner Impact
Hardness Value
Notched Izod Impact
Shear Modulus
Shear Strength
Tensile Impact Strength
Tensile Modulus
Tensile Strength @ Brk
Tensile Strength @ Yld
Unnotched Izod Impact

-Optical
Haze

Value ■

Ignition Resistant
Mold Release, Good
UV Resistant

Coextrusion
Blow Molding, Extrusion
Extrusion, Profile
Extrusion, Sheet
Blow Molding, Injection
Thermoforming
Yes
Appliances
Business Equipment
Electrical Parts
Lawn and Garden Equipment
Communication Application

6.000
4.00
0 - 3 0 0 - 0 1 .2 kg

1.2095
0.150
0.320

100.0
6.5
360000
14000

Rockwell Hardness M-Scale 59
12.00 @ 73"F, 0.12500"

260.00 @ 73'F
330000
8500
8700
No Break @ 73"F, 0.12500"

Units --

%
%

-F
"F
mils/in
g/10 min

%
%

Isi
h

%
psi
psi
in-lb

ft-lbfin
psi
psi
Ft-lb/inA2
psi
psi
psi
It-lb/in

%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I^
K

)£
8U

€3
tt£

lH
B

B
V

U
£f

9
l«

l»

70

Refractive Index
Transmittance

-Thermal
Brittle Temp
Coef Linear Thermal Exp
Deflection Temp @ 264 psi
Deflection Temp @ 66 psi
Specific Heat
Thermal Conductivity
Vicat Softening Point

-Flammability
Limiting Oxygen Index

-Electrical
Dielectric Constant
Dielectric Strength
Dissipation Factor
Surface Resistivity
\blume Resistivity

-Underwriter Labs
Arc Resistance
Comparative Tracking Ind
High Volt Arc Res to Ign
High Volt Arc Track Rate
High-Ampere Arc Ignition
Hot Wire Ignition
Rel Temp Indx Mech w/Imp
Rel Temp Indx Mech w/olmp
Relative Track Ind Elect
UL 94 Rating

-Injection Molding
Back Pressure
Drying Temp
Drying Time
Freeze Temp
Front Cylinder Temp
Injection Pressure
Injection Time
Middle Cylinder Temp
Minimum Wall Thickness
Mold Tmp
No Flow Temp
Nozzle Tmp
Processing Temp
Rear Cylinder Temp
Screw RPM

-Thermoset
Apparent Density
Bulk Factor
Mix Ratio By Volume
Mix Ratio By Weight
Mixed Viscosity
Stoichiometry

-Elastomer
Compression Set
Tens Modulus, 100% Elong
Tens Modulus, 200% Elong
Tens Modulus, 300% Elong
Tens Modulus, 50% Elong

3.80000
266

310

40.00

3.00
405.00
0.001000

V-0

%

inA-5/(in-“F)
“F
-F
BTU/lb "F
BTUin/hrftA2“F
"F

%

V/10-3 in

ohm
ohm cm

seconds

of arcs
seconds

psi
"F
hours
"F
"F
psi
seconds
"F
in
-p
“F
“F
"F
”F
rpm

lb/ftA3

cps

%
psi
psi
psi
psi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71

HARDWARE / SOFTWARE ENVIRONMENT

A major challenge facing computer-aided engineering software developers is

interfacing a variety of tools that exist on an even wider range of hardware. For the

prototype expert system, three distinct software implementations had to be considered:

Kappa PC is a windows based PC product, PROSPECTOR is a DOS based PC product,

and I-DEAS is a UNIX based workstation product Specific requirements for each of these

software products are listed below.

The expert system shell Kappa PC is a general purpose C-based application

development and delivery environment for PCs and requires the following system

components:

• 286 or higher processor
• 640 KB RAM
• Hercules™ Graphics Card, EGA®, or VGA® Monitor

• 2 MB disk space
• MS-DOS 3.0
• Microsoft Windows 3.0

The PROSPECTOR commercial database, available from IDES, requires the following:

• IBM or compatible PC
• 4MB RAM
9 1 ̂A/TD /Jiolr c

A w/ XVXJL* UiOA

• Microsoft Windows 3.1 (Enhanced mode)

I-DEAS™, installed on a DECstation ULTRIX configuration requires:

• ULTRIX 4.2A
• DECWindows 4.2A
° PHIGS 2.3A and PEX 5.0 Graphics Libraries
• Fortran 77 v3.1
• 16 MB Memory
• 75 MB disk space (minimum / options additionally require up to 450MB)
• 150 MB swap space

The hardware / software requirements of these software packages highly restrict the

platforms that can support the integrated approach of the expert system application. Hence,

the prototype expert system was implemented on an IBM DX266 (Model 77) OS/2 v2.11.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

72

The capabilities of the IBM system provide a seamless tool for the implementation of the

integrated prototype system.

SUM MARY

The integration of CAE software tools for plastic part design significantly simplifies

the design process. Incorporating existing CAE applications such as computer-aided

design and solid modeling, material databases, and analysis software not only extends the

utility of the prototype expert system, but provides the designer with a single, easy-to-leam

and easy-to-use tool for generating the design for plastic parts. The utility of the prototype

is further enhanced by interactively involving the designer in the design process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 7

RESULTS AND CONCLUSIONS

Expert systems have been applied to a variety of engineering problems. Early

successes have been recorded in derivation problems: monitoring manufacturing

processes, diagnosing and predicting failures, controlling chemical processing, and

advising FEM users. These systems are currently being implemented by the users of the

systems, often with fairly easy-to-use PC expert system shells with robust development

tools. Expert systems have also been developed in the last decade for formation problems

in planning and design. However, most of these implementations have used the heuristic

programming languages LISP and PROLOG or complex programming environments like

KEE and ART.

This research has resulted in a prototype expert system implementation for an

engineering design application: the design of a feature for an injection molded plastic part

The prototype system was implemented using an expert system shell and has been

evaluated by experts in both injection molding part design and software development The

prototype was modified to reflect these evaluations; the resulting expert system performs

closely to an expert designer and is relatively simple for a designer to use.

The prototype expert system addresses a fairly narrow domain. To be an effective

design tool, the prototype must be extended from basic feature design to the design of

complex parts and their corresponding molds and to other manufacturing processes. With

the object oriented rule-based representation scheme, additional features and processes can

be easily incorporated. However, the value of this prototype is in establishing the

guidelines, or templates, for developing expert system tools for design processes.

Previous research in expert system applications for engineering design has not

addressed the use of high level development tools, i.e., expert system shells. One

exception is the development of an automated fixture design system (MEFDES by kumar,

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

74

Nee, and Prombanpong 1992) which is a planning application that integrates an expert

system, developed with the Nexpert Object expert system shell, with the ME30 CAD

system. This research, on the other hand, addresses an engineering design application and

integrates the expert system with a solid modeling system as well as external databases and

interfaces to external software.

RESULTS

The goal o f this research was to develop a standard approach to implementing

expert systems for engineering design applications. To pursue this goal, several

fundamental tasks (or objectives) for developing an expert system for an engineering

design application were explored and formalized:

• investigate the use of expert systems shells for design problems

• categorize the knowledge required to solve design problems

• formulate representations for the knowledge

• integrate the expert system with external databases and solid modeling software

• develop interactive capabilities, as well as graphical interfaces.

The accomplishments for each of these tasks, along with recommendations pertinent to

expert system implementations for engineering design applications, are discussed in each of

the following sections.

EXPERT SYSTEM SHELLS. The prototype application has demonstrated the

feasibility of using shells to develop expert systems for formation problems. The

successful implementation has identified features that are essential in an expert system

development tool for an engineering design application: a variety of knowledge

representations and capabilities to integrate external software; to develop an interactive,

graphical user interface; and for explanation.

Kappa PC has proven to be a good development tool for design problems. The

cantilever snap joint prototype development has demonstrated that knowledge characteristic

to a design problem can be effectively represented in an object-oriented, rule-based system.

The objects, and associated methods, are useful in representing materials and specifications

data, as well as the engineering models and scientific principles used to analyze the design.

The heuristics, which are an integral part of any design problem, are suitably represented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

75

by rules. Kappa PC provides capabilities to integrate the knowledge base with existing

databases and software, including solid modeling systems. Kappa PC also provides an

extensive development environment which facilitates rapid prototype implementation and

interactive capabilities to integrate the user’s expertise with the system.

The prototype development has also demonstrated the ease of using an expert

system shell for design applications. A user familiar with Kappa PC can develop a simple

system, complete with a viable user interface, in a matter of hours. For the user who is

also the design engineer, familiar with the design heuristics of the problem, knowledge

acquisition for the system is a much simpler task. The design engineer is able to provide

many of the rules from his/her own experience. Since many programming tasks have been

incorporated in the development tools within Kappa PC, a typical engineer with limited

programming skills will be able to use Kappa PC effectively. Thus Kappa PC is a

powerful tool for the design engineer.

The demonstration system has illustrated the utility of expert system shells for

engineering design problems. Expert system shells deal effectively with the complexity of

engineering design, and they provide a designer, familiar with the design heuristics of a

problem, with an easy-to-use tool that facilitates rapid development of an expert system.

CATEGORIZE KNOWLEDGE. A variety of knowledge typically found in design

problems was identified: hierarchy of configurations and components, geometric

information and constraints, material properties, specifications, analysis procedures based

on governing equations, and heuristic design rules. The prototype system has specifically

addressed each of the knowledge categorizations identified as key elements o f mechanical

engineering design.

KNOWLEDGE REPRESENTATION.

A rule-based system is a good representation for the many guidelines and rules of

thumb that are invoked in a design application. Generally, these rules take the form of “If-

Then” procedures. However, the complexity of design does not lend itself to a procedural

collection of these rules. Often, the expert designer cannot develop this set of procedures

for a particular design problem but can formulate various rules, as premises leading to

conclusions, that he uses to arrive at a proposed solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

76

An object-oriented environment is an excellent paradigm for representing the

knowledge in engineering design problems. A mechanical design is often a hierarchy of

components with specific attributes, which can be modeled by a network of objects and

their slot values. The relationships between the components are similar to the relationships

in a network and can be modeled with methods attached to the objects. These

relationships, e.g., algorithmic analysis procedures, can also be executed as external

programs. The remaining knowledge — materials and properties, geometric configurations

and constraints, and specifications -- is also amenable to representation as objects.

INTEGRATION. The prototype system integrates two commercial products: the

PROSPECTOR external materials database and Structural Dynamics Research

Corporation’s I-DEAS™ (Integrated Design Engineering Analysis System). This

integration expands the capability and flexibility of the expert system. Since engineering

design often uses databases, either large materials databases or geometry databases, and

involves any number of simple to complex analysis software packages, the expert system

design aid must have the functionality to incorporate a variety o f external knowledge

sources in engineering design applications. The integration can often be effectively

accomplished through ASCII file exchanges.

INTERACTIVE. The prototype system exhibits an interactive user interface, which

is instrumental in a user’s acceptance of an expert system. A well developed graphical

interface affects how easy a system is to learn and contributes to the ease of use, and thus

to the system’s eventual acceptance. The user interface must address the novice designer as

well as the expert designer, allowing the user to participate in the design process.

The rich development environment of the expert system shell chosen for the

prototype provides the developer with the means to generate a sophisticated user interface,

incorporating graphical and interactive tools. The toolkit available in Kappa PC greatly

simplifies the user interface development resulting in an effective, interactive interface.

CONCLUSIONS

In design problems, a variety of knowledge is available for the design solution.

Integrating all these knowledge sources into the expert system enhances the problem

solving capabilities of the system. In the prototype expert system, the material information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

77

was loaded from a large materials database, demonstrating the interface capability with

external databases. Realistic design problems need to incorporate an external materials

database containing a wide range o f materials.

Tne algorithmic procedures relevant to designing a cantilever snap fit were

implemented in the methods attached to the objects. However, the algorithmic procedures

contained in the analysis software products available for engineering design are numerous

and lengthy. A more effective approach for incorporating the algorithms in an expert

system is to use the features of the shell to execute external procedures.

A versatile interface accommodates a range of users — from the novice who uses the

expert system as a tutor, to the expert who uses the system as a design aid or to validate a

proposed design. An expert system is most powerful when it involves an expert user in the

design process. The interactive capabilities of the prototype system incorporate the user as

an additional knowledge source, extending the system from a tutorial package to a truly

important design aid. The rule trace feature in Kappa PC provides essentially the same

information as an explanation facility and was useful in developing the system; however,

an explanation facility needs to be developed to extend the use of the prototype to novice

users, who need a tutorial approach to the design application.

Other expert system tools are emerging as viable development tools for

implementing sophisticated expert systems. Many of the vendors offer their products in the

Windows environment and have incorporated objects and message passing capabilities and

graphical tools for developing and debugging applications. Some of the major tools in

addition to Kappa PC / ProKappa, are Level5 Object, Nexpert Object, and TIRS and ESE

(from IBM). Vendors are working to offer their products on multiple platforms providing

the expert system developer more versatility in distributing expert system applications.

This new generation of expert system tools provides easy-to-leam and easy-to use software

for expert system implementations.

Developing the expert system application also demonstrated a need to address the

same concerns that arise in a large, comprehensive software project, i.e., modularity,

maintainability, scalability, and validation / verification. In developing the knowledge

representations, efforts need to be made to provide modularity for the system. Modularity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

78

makes the system development more efficient and allows future extensions to be made with

minimal disruption to the system. Modularity influences the maintainability of the system,

but structured programming languages have had a more pronounced impact on the

m aintainability of comprehensive software projects. High level tools, like expert system

shells, assist the developer in structuring the system and provide an easily understood tool

for maintenance tasks and for system development documentation. Object-oriented

environments are inherently structured, and thus produce more maintainable systems. The

value of an object-based approach was demonstrated when modifications were easily made

to the prototype system. The scalability of the application needs to be addressed during the

development of a prototype system since the prototype may not be applicable to larger,

more complex problems. Finally the developer needs to formulate definite plans to verify /

validate the system. Generally a good test for the expert system is to compare its

performance to an expert, who has not been involved with the expert system development

A hybrid expert system shell, based on an object-oriented knowledge representation

coupled with production rules, provides a useful tool for the design engineer. The design

engineer, familiar with separating a problem into components, can easily formulate the

components as objects; he can also easily implement his design knowledge with “If-Then”

rules. However, knowledge acquisition may still be a problem, even for the design expert

The expert must be able to organize his design procedures and express the procedures in

some representation, typically in production rules. This is not a trivial task, and the expert

is often reluctant, or unable to carry out this step.

FUTURE RESEARCH

The prototype implementation characterized the various forms of knowledge used in

design processes and identified corresponding knowledge representations. This work lays

the foundation for expert system implementations for more complex problems, involving

many interrelated design components.

The prototype demonstrated the importance of integrating the knowledge base with

existing databases and analysis software. Thousands of materials exist for manufacturing

plastic parts. Database features are often employed in selecting an appropriate subset of

materials for a particular application, but the format of some existing databases is not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

79

directly compatible with the Kappa PC database interface. Standardization of database

representations will promote the integration of existing databases with expert system

knowledge bases. Incorporating the geometric and features databases generated by

computer-aided design and solid modeling software into an expert system alleviates the

user from providing this information to the system and ensures consistency of the data. In

addition, the sophisticated design aspects of the CAE software can be exploited in

developing the conceptual design.

More complex engineering problems require more advanced analysis tools, like

finite element modeling. A widely used, integrated software system from the Structural

Dynamics Research Corporation (SDRC), I-DEAS™, is used for conceptual design,

analysis, detailed design and drafting, computer-aided testing and manufacturing of

mechanical products. I-DEAS not only offers FEM capabilities, but also a solid modeling

database, a material data system, dynamic analysis, numerical control machining and

plastics analysis. Coupling an analysis tool like I-DEAS with an expert system produces

an extremely valuable design aid and can be accomplished in one of three ways:

embedding the expert system in the analysis tool, embedding the analysis tool in the expert

system, or executing each system independently sharing information between the two

applications through a blackboard architecture. For sophisticated systems like I-DEAS, the

first approach provides the most flexibility to the designer; the full capabilities of the

analysis tool are available for the design problem, while the expert system guides the

design solution. The second approach is easier to implement and is appropriate for simpler

analysis systems. Executing the two systems independently requires a great deal of

communication between the systems, which may not be easily developed.

Extensive user interface features impact the acceptance and viability of a software

product. Kappa PC provides a good set of graphical tools for developing an interactive,

responsive user interface. More development in the user interface should focus on

explanation and knowledge acquisition capabilities. Explanations of the reasoning used in

the design process extend the role of an expert system to that of a computer-assisted

instructor. A knowledge acquisition facility helps ensure that the expert system will

continue to evolve and will continue to be used. Involving the expert user, as a knowledge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80

source, and adding this knowledge to the database extends the usefulness o f the expert

system design.

The modularity o f an object-based knowledge representation readily permits

extensions to the prototype for the complete hierarchy of complex plastic parts: the nominal

wall, projections off the nominal wall, and depressions into the nominal wall. These three

classifications can be implemented as distinct classes; the snap joint class is a subclass of

projections. Other features found in injection molding applications — annular snap-fits,

ribs, bosses, holes — are subclasses o f the projection and depression classes. Complex

features such as threads, springs, gears, and bearings are combinations of the basic

elements. Manufacturing processes can be incorporated in the prototype through the use of

rule sets. The rules used for injection molding processes can be grouped in a set; and sets

can be constructed for other manufacturing processes.

An experienced designer routinely considers various factors for optimizing a

design, e.g., weight, volume, and cost, and adjusts his designs accordingly. Rules can be

added to the prototype expert system to incorporate optimization techniques in evaluating

the design. I-DEAS includes an optimization task within the FEM module; existing

software routines for optimization can also be executed using the shell interface capabilities

to external programs.

A fully functioning expert system incorporating these complex features would

provide a powerful design aid for the mechanical designer. A design engineer, using the

SDRC solid modeling system, could develop a conceptual design; the resulting solid

modeling databases would serve as knowledge sources for the expert system. Other

knowledge sources would be constructed from the materials data system, heuristic rules for

part design, and analysis software, such as finite element modeling. The expert system,

using these knowledge sources interactively with the designer, would determine the

feasibility of the conceptual design, and modify the. design, iteratively, until an optimum

design is formulated. The expert system would thus facilitate cooperative problem solving

among multiple experts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX A

LISTINGS: CLASSES (INCLUDING METHODS),
INSTANCES, RULES, FUNCTIONS

?**/
/** ALL CLASSES ARE SAVED BELOW **/
j * 5je * sje aje aje sje * sje aje * aje sje sje sje sje * sje s i c * sje sje aje sje aje aje * aje ajeaje * * sje * sjesje sje sje aje aje aje aje aje sje sje aje sje aje aje aje aje a*c sje aje aje aje a je ^

J sje sje * * sje * sje * sje a j: sjesje sje aje sje sje sje * * * aje afc * * * * * * aje * aje * sje * aje * *

**** CLASS: material
sje aje aje aje aje sje sje aje sje aje aje sje aje sje sle sje sje sje sje sje sjc sjc sje aje sjc sje sje aje sje aje sje sje sje sje sje sje sje y

MakeClass(material, Root);

/************** METHOD: select **************/
MakeMethod(material, select, [],

{
GetInstanceList(material, Globahmatlist);
AppendToList(Globahmatlist, "NEW MATERIAL DATABASE");
cantilever:material_type = PostMenu("Select a material", Global:matlist);
If (Global:feature:material_type #= "NEW MATERIAL DATABASE")

TTien loaddb();
});

/************** METHOD: output mat **************/
MakeMethod(material, output_mat, [],

{
CiearTranscriptImage(output_mat);
DisplayText(output_mat, FormatValue("Material: %s", Global:feature:material_type));
DisplayText(output_mat, FormatValue("\nType: %sVnProperties @ 73F",

Global:featuie:material_type:type));
DisplayText(output_mat, FormatValue(

"\nTensiIe Stress @ yieia%8.0f\nElongation @yieid%10.if”,
Global:feature:material_type:tensile_stress, Global:feature:material_type:elongation));

DisplayText(output_mat, FormatValue("
\nFlexural Modulus%12.0f\nComp Stress @yield%10.0f’,
Global:feature:material_type:flexural_modulus,
Global:feature:material_type:compressive_stress));

DisplayText(output_mat, FormatValue("\nStatic Coefficient of Friction\n
Plastic_Plastic% 10.2f\n Plastic_Metal% 10.2f’,

Global:feature:material_type:mu_plastic_plastic,
Global:feature:material_type:mu_plastic_metal));

});
MakeSlot(materiahtype);
MakeSlot(material:flexural_modulus);

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SetSlotOption(material:flexural_modulus, VALUEJTYPE, NUMBER);
MakeSlot(materialielongation);
SetSlotComment(materiahelongation, Percentage);
SetSlotOption(material:elongation, VALUEJTYPE, NUMBER);
SetSlotOption(materiahelongation, MINIMUM_VALUE, 0);
SetSlotOption(materialielongation, MAXIMUM_VALUE, 100);
MakeSlot(material:mu_plastic_plastic);
SetSlotOption(material:mu_piastic_plastic, VALUE_TYPE, NUMBER);
MakeSlot(material:mu_plastic_metal);
SetSlotOption(material:mu_plastic_metal, VALUEJTYPE, NUMBER);
MakeSlot(material:tensile_stress);
SetSiotOption(material:tensile_stress, VALUE_TYPE, NUMBER);
MakeSlot(material:compressive_stress);
SetSlotOption(material:compressive_stress, VALUE_TYPE, NUMBER);
MakeSlot(materiahflag);
SetSlotOption(materiahflag, ALLOWABLE_VALUES, yes, no);
materiahflag = NULL;

**** CLASS: design
% :je sfe j$c sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje aje sje sje sje sje sje sje sje sje sje aje sje sje sje s jc ^

MakeClass(design, Root);
MakeSlot(design :area);
designrarea = 0.062500;
MakeSlot(design:allowstrain);
desigmallowstrain = 0.027300;
MakeSlot(design:deforce);
design:deforce = 14.391043;
MakeSlot(designrfactor);
design:factor = 1.0;
MakeSlot(design:mateforce);
designrmateforce = 22.796429;
MakeSlot(design:sepforce);
design:sepforce = 11360179;
MakeSlot(design:strain);
design:strain = 0.021492;
MakeSlot(design :tensile_stress);
design:tensile_stress = 181770601.120000;
MakeSlot(design:compressive_stress);
design:compressive_stress = 8101.862864;
MakeSlot(design:mu);
design:mu = .55;
MakeSlot(designrcriteria);
designrcriteria = good;
MakeSiot(desigmiength);
designrlength = 0.70;

^ s je sje sje sje sje sje sje sje sje s j: sje s j: sje sje sje sje sje sje

**** CLASS: feature
s je s je s jc s jc s je s je s je s je s je s je s je s je s je s je s je s je s jc s jey

MakeClass(feature, Root);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I*/L sje 3*C aje sje sje aje >je aje a*c aje aje aje sje sje sje aje aje aje aje aje sj? aje aje aje aje aje aje sje aje aje sje aje aje aje aje aje

**** CLASS: nominal_wall
* ale ale aje aje a|e aje aje aje aje aje aje aje sje aje aje ale aje aje aje aje * aje a»e aje aje aje aje sje aje * * aje sje aje aje a je^

MakeCIass(nominal_walI, feature);
^ a je aje aje aje afe sfc aje aje aje * sje aje aje aje aje aje aje aje sje aje aje aje sje aje aje aje aje aje aje ale aje sje aje aje aje sje *

**** CLASS: projections
% aje aje aje a}; aje aje a}: aj: sje aje aje ajeajeaje aje a}: s je aje sje aj: sfe aje aje * * a j: aje aje aje sje aje aje aje aje aje a jey

MakeClass(projections, feature);

**** CLASS: snap_joint
s|t * + j|cj|s * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

MakeClass(snap jo in t, projections);

^ a je aje a j: a)e sje aje 3je sic j }c afc sic aje aje aje aje aje aje aje sje aje sje aje aje aje aje sje sje sje aje ate aje aje aje aje aje a j: aje

**** CLASS: cantilever
aje a}; aje aje sje aje aje aje a j: aje aje aje sje aje aje aje aje aje afc aje sje aje aje aje aje aje afc aje aje aje aje aje aje aje aje aje a je^

MakeClass(cantilever, snap j o in t);

/************** METHOD: change_geometry **************/
MakeMethod(cantilever, change_geometry, [],

{
PostfnputForm("Geometry data”, cantilevenlength, "Enter length",

cantilevenwidth,"Enter width", cantileventhickness, "Enter thickness",
cantilevenundercut, "Enter undercut", cantilever:lead_angle, "Enter lead angle",
cantilever:retum_angle,"Enter return angle");

});

/************** METHOD* init **************/
MakeMethod(cantilever, init, Q,

{
PostInputForm("Initial design configuration",

cantilevengeometry,"Select type of geometry",
cantilevenflex, "Select number of assemblies",
cantilever:material_mating, "Select component types",
cantilever:NW, "Enter nominal wall thickness",
cantilever:lead_angle, "Enter lead angle",
cantilever:retum_angle,"Enter return angle",
cantilever:self_locking, "Is snap self locking?",
cantilevenmaxlength, "Enter maximum length of cantilever",
cantilevenmateforce, "Enter maximum mating force",
cantilevensepforce, "Enter maximum separating force");

cantileventhickness = .5 * cantilever:NW;
cantilevenlength = 5.4 * cantileventhickness;
If Nuil?(cantilevenmaxlength)

Then (cantilevenmaxlength = 3 * cantilevenNW)
Else If (cantilevenmaxlength > 3 * cantilevenNW)

Then {
cantilevenmaxlength = 3 * cantilevenNW;
PostMessage("Resetting Max Length to 3*Nominal Wall");
};

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

84

If (cantilevenlength > cantilevenmaxlength)
Then cantilevenlength = cantilevenmaxlength;

cantilevenwidth = 4 * cantileventhickness;
cantilevenundercut = .176 * cantilevenlength;
Global:angle = 90 - Atan(design:mu) * 180 / 3.14159;
If Null?(car.tilevensepforce)

Then cantilevensepforce = 0;
If Null?(cantilevenmateforce)

Then cantilevenmateforce = 0;
});

/************** METHOD: output config **************/
MakeMethod(cantilever, output_config, [],

{
ClearTranscriptImage(output_config);
DisplayText(output_config, FormatValue("Cross Section Geometry: %s \nNumber of

Assemblies: %s\nMaterials: %s \nSelf-locking: %s ”,
cantilevengeometry, cantilevenflex,cantilever:material_mating,cantilevenself_locldng));

DisplayText(output_config, FormatValue(
"\jiLength % 11.3f Max%8.3f\nWidth %13.3f\nThickness %7.3f\nUndercut %8.3f',

cantilevenlength, cantilevenmaxlength, cantilevenwidth, cantileventhickness,
cantilevenundercut));

DisplayText(output_config, FormatValue("\nAngles:Lead%6.0f Retum%6.0f',
cantilever:lead_angle, cantilever:retum_angle));

DisplayText(output_config, FormatValue("\nForce:Mating%6.If Sep.%8.If',
cantilevenmateforce, cantilevensepforce));

If (cantilevengeometry #= constant)
Then (Bitmap l:FileName = snconst.bmp)
Else If (cantilevengeometry #= hdecreasing)

Then (Bitmap l:FileName = snthk.bmp)
Else Bitmapl:FileName = snwidth.bmp;

Drawlmage(Bitmap 1);
});

METHOD' calculate ***=!'**********/
MakeMethod(cantilever, calculate, [],

(i
If (cantilevengeometry #= constant)

Then (desigmfactor = .67)
Else If (cantilevengeometry #= bdecreasing)

Then (desigmfactor = 1.09)
Else desigmfactor = .86;

desigmstrain = cantilevenundercut * cantileventhickness / desigmfactor /
cantilevenlength A 2;

If (cantilevenflex #= single)
Then (desigmfactor = .7)
Else desigmfactor = .42;

design:allowstrain = desigmfactor * cantilever:material_type:elongation /100;
desigmdeforce = cantilevenwidth * cantileventhickness A 2 / 6 *

cantilever:materia!_type:flexural_modulus * desigmstrain / cantilevenlength;
If (cantilever.material_mating #= p!astic_plastic)

Then (desigmmu = cantilever:material_type:mu_piastic_plastic)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

85

Else designrmu = cantilever:material_type:mu_plastic_metal;
design:mateforce = designrdeforce * (design:mu + Tan(cantilevenlead_angle*

3.14159 / 1 8 0)) / (! - design:mu * Tan(cantilever:lead_angle * 3.14159 /1 8 0)) ;
designrsepforce = design:deforce * (design:mu + Tan(cantilever.retum_angle *

3.1415 / 1 8 0)) / (! - design:mu * Tan(cantilever:retum_angle * 3.14159 /180));
If (cantilevengeometry #= constant)

Then (desigmfactor = 1.0)
Else If (cantilevengeometry #= bdecreasing)

Then (desigmfactor = .5)
Else desigmfactor = .25;

desigmarea = desigmfactor * cantilevenwidth * cantileventhickness;
design:tensile_stress = designrsepforce / desigmarea +

cantilever:material_type:flexural_modulus * desigmstrain;
design:compressive_stress = cantilever:material_type:flexural_modulus * desigmstrain

- designrmateforce / desigmarea;
designrlength = cantilevenlength;
});

/************** METHOD: output_soln **************/
MakeMethod(cantilever, output_soln, [],

{
ClearTranscriptImage(output_soln);
DisplayText(output_soln, FormatValue("\nStrain %10.4f\nAllowable % 8.4f,

design rstrain, designrallowstrain));
DisplayText(output_soln, FormatValue("\n\nMating Force %10.1f\n",

designrmateforce));
If (cantileverrselfjlocking #= no)

TTien DisplayText(output_soln, FormatValue(”\nSeparating Force%10.1f\n",
designrsepforce));

DisplayText(output_soln, FormatValue("\nDeflection Force%10.1f\ designrdeforce));
DisplayText(output_soln, FormatValue("\n\nFeature data written to \nprogram file:

■faoHotn" VAVUUUVU J J)

});

MakeSlot(cantilevenflex);
SetSlotOption(cantilevenflex, ALLOWABLE_VA.LUES, single, multiple);
cantilevenflex = multiple;
SetSlotOption(cantilevenflex, PROMPT, "Select number of assemblies");
MakeSlot(cantilevengeometry);
SetSlotOption(cantilevengeometry, ALLOWABLEJVALUES, constant, hdecreasing,
bdecreasing);
cantilevengeometry = hdecreasing;
SetSlotOption(cantilevengeometry, PROMPT, "Select type of geometry");
MakeSlot(cantileverrlead_angle);
SetSlotOption(cantilevenlead_angle, VALUEJTYPE, bitJMBER);
cantilevenlead_angle = 35;
MakeSlot(cantilevenlength);
SetSlotOption(cantilevenlength, VALUEJTYPE, NUMBER);
cantilevenlength = 0.675000;
MakeSlot(cantilever:material_mating);
SetSlotOption(cantilevenmaterial_mating, ALLOWABLE_VALUES, plastic_plastic,
plastic_metal);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

cantilever:material_mating = plastic_plasiic;
SetSlotOption(cantilever:material_mating, PROMPT, "Select component types");
MakeSlot(cantilevenmaterial_type);
SetSlotOption(cantilever:material_type, VALUEJTYPE, OBJECT);
SetSlotOption(cantilever:material_type, ALLOWABLE_CLASSES, material);
cantilever:material_type = Calibre.800.10;
MakeSlot(cantilevenmateforce);
SetSiotOption(cantilevenmateforce, VALUEJTYPE, NUMBER);
cantilevenmateforce = 0;
MakeSlot(cantileventhickness);
SetSlotOption(cantileventhickness, VALUEJTYPE, NUMBER);
cantileventhickness = 0.125000;
MakeSlot(cantilevenwidth);
SetSlotOption(cantilevenwidth, VALUEJTYPE, NUMBER);
cantilevenwidth = 0.500000;
MakeSlot(cantilever:retum_angle);
SetSlotOption(cantilever:retum_angle, VALUE_TYPE, NUMBER);
cantilever:retum_angle = 60;
MakeSlot(cantilevenundercut);
SetSlotOption(cantilevenundercut, VALUEJTYPE, NUMBER);
cantilevenundercut = 0.056448;
MakeSlot(cantilevenNW);
SetSIotOption(cantilevenNW, VALUE_TYPE, NUMBER);
cantilevenNW = .25;
MakeSlot(cantilever:self_locking);
SetSlotOption(cantilevenselfjocking, ALLOWABLEJVALUES, yes, no);
cantilever:self_locking = yes;
MakeSlot(cantilevensepforce);
SetSlotOption(cantilevensepforce, VALUEJTYPE, NUMBER);
cantilevensepforce = 0;
MakeSlot(cantilevenmaxlength);
cantilever:maxlength = 0.750000;

j 3>e jje sje jje jje jje jje jje jje jje jje jje jje jje jje jje jje jje jje jje jje jje jje sje sje sje jje sje sje jje sje aje jje jje :je jje

**** CLASS: torsional
j je j je j je : je j je j jc j jc j{ e : je j jc j je j je j je j jc j jc j je j je j je j je : je j je j je j je j je j j e : j e j{ e j je j{ e j je j je j je j{ e j je j jc j { e j (e ^

MakeClass(torsional, snap_joint);

**** CLASS: annular
jje sje jje jje jje jje jje jje jje jje jje jje jje jje jje jje sje jje jje jje jje sje jje jje jje jje jje jje jje jje jje jje jje jje jje jje j j e ^

MakeClass(annular, snap_joint);

***** CLASS: ribs

MakeClass(ribs, projections);

y j j e jje j je jje j je j je j je j je jje jje jje jje jje j je j je j je jje j je jje jje j je jje jje jje jje jje jje jje jje jje jje jje jje jje jje jje jje

**** CLASS: depressions

MakeClass(depressions, feature);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

j jf . :jc sje sic sje sje sje sje sj: sje sje sje sje sje sje sje sje sje aje jje sje sje sje sje sje sje sje sje aje sje jje sje sje ale sje sje^

/** ALL INSTANCES ARE SAVED BELOW **/
ĵ)e+ + + **** sje ** Jje * s(c ** **=!<******!!'** =i< * =f=

MakeSlot(Globalrmatlist);
SetSlotOption(Globalrmatlist, MULTIPLE);
SetValue(Globalrmatlist, Bayblend.FR. 1439, Calibre.800.10, Magnum.3661,
Pulse. 1725, "NEW MATERIAL DATABASE");
MakeSlot(Globalrangle);
SetSlotOption(Globalrangle, VALUEJTYPE, NUMBER);
Globalrangle = 61.189194;
MakeSlot(Globalrfieldnames);
SetSlotOption(Globalrfieldnames, MULTIPLE);
SetValue(Globalrfieldnames, TYPE, MODULUS, ELONGATION, MUJPP, MUJPM,
TSTRESS, CSTRESS);
MakeSlot(Globalrslotnames);
SetSlotOption(Globalrslomames, MULTIPLE);
SetValue(Globalrslotnames, type, flexural_modulus, elongation, mu_plastic_plastic,
mu_plastic_metal, tensile_stress, compressive_stress, flag);
MakeSlot(Globalrinstance);
Globalrinstance = Zytel.l01..Dry.;
MakeSlot(Globalrnum);
Globalrnum = 6;
MakeSlot(Globalrfeature);
Globalrfeature = cantilever;
MakeSlot(Globalrxscreen);
Globalrxscreen = 1024;
MakeSlot(Globalryscreen);
Globalryscreen = 768;
MakeSlot(GlobairRuleSet);
SetSlotOption(GlobairRuleSet, MULTIPLE);
SetValue(GlobairRuleSet, ckstrain, cktensile_stress, ckcompressive_stress, ckdesign,
cktensile, ckcompressive, smallest_lead_angle, largest_lead_angle, ckretum_angle,
ckselfjocking, cknotself_locking, ckmateforce, ckmateforce2, cksepforce, cksepforce2,
ckstrain2, cklength);

j***********************:****:*:*********
**** INSTANCE; geometry
sje s je s je s je s je s je s je s je s jss jc s je ^

Makelnstance(geometry, Button);
geometry rX = 384;
geometryrY = 119;
geometryrTitle = "Change Geometry";
geometryrWidtn = 192;
geometryrHeight = 38;
geometry; Visible = TRUE;
geometryrAction = change_geometry;
geometryrShowBorder = TRUE;
Resetlmage(geometry);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

88

JJf. sje sje sje sje sje sje sje sje sje sje sje sje sj: sje * * H6 * ̂ * sj: sje sje sje sje sje sje sje aje sje aje sj: sje sje sje sje

**** INSTANCE: process
sje sje a}c sje sje sje sje sje sje sje sje sje sje sje sje sje % sje sje sje sje sje sje sje sje aje sje sje sje sje sje s j: sje s|e sje sje s je ^

Makelnstance(process, Button);
process:X = 384;
process:Y = 203;
process:Title = Design;
process:Width = 192;
process:Height = 38;
process: Visible = TRUE;
process:Action = process;
process:ShowB order = TRUE;
Resetlmage (process);

j sje sje s j: sje sje aje sje sje sje sje s jt sje sje sje sje

**** INSTANCE: Text4
s je s je s je s je s je s je s je s je s je s je a je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s jc s je s je s je s je s je s je s je s je s je s je s je^

Makelnstance(Text4, Text);
Text4:X = 153;
Text4:Y = 76;
Text4:Width = 307;
Text4:Height = 38;
Text4:Visible = TRUE;
Text4:Title = "Snap Joint Demonstration";
Text4:ShowBorder = TRUE;
Text4:TextSize =15;
Text4:Transparent = true;
Resetlmage (Text4);

j i f sje sje sje sje sje sje sje sje sje sje aj: sje sje sje sje sje sje sje sje sje sje sfc sje sje sje sje sje sje sje sje sje s j: sje sje sje sje

**** INSTANCE: output_soln
sje sje sje sje s j: sfc sje sje sje sje sje jje sje sje sje s j: sje sje sje s j: sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje s je ^

Makelnstance(output_soln, Transcript);
output_soln:X = 655;
output_soln:Y = 422;
output_soln:Visible = TRUE;
output_soln:Width = 307;
output_soln:Height = 268;
Resetlmage (output_soln);

**** INSTANCE: output_config

Makelnstance(output_config, Transcript);
output_config:X = 20;
output_config:Y = 422;
output_config:Visible = TRUE;
output_config:Width = 307;
output_config:Height = 268;
Resetlmage (output_config);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

89

y sjc sje sje sje sje sje sje sje sje sj: sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje * sje sje sje sje sje sje sje sje sje sje sje

**** INSTANCE: output_mat
sje sje 3$c sje sje sje sje s j : sje s(e sje sje sje sje ale sje sje s je sje sje sje afc sje % sje sje sje sje sje sje sjt sje sje sje sje sje s je y

Makelnstance(output_mat, Transcript);
output_mat:X = 348;
output_mat:Y = 422;
output_mat: Visible = TRUE;
output_mat:Width = 307;
output_mat:Height = 268;
Resetlmage (output_mat);

y s je sje sje sje sje sje sje sje sje sje sje sje sje 3jc sje sje sje sje sje sje sje s j: sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje

**** INSTANCE: select_material
sje sje sje sje sj? sje sje sje sje sje sje sje sje sje sje £ sje sje sje sje 9fe s}c sje sje sje sje sje s|c sje sje sje sje sje sje sje sje a(c y

Makelnstance(select_material, Button);
select_material:X = 384;
select_material:Y = 161;
select_material:Title = "Select Material";
select_material:Width = 192;
select_material:Height = 38;
select_material:Visible = TRUE;
select_material:Action = select;
select_material:ShowBorder=TRUE;
Resetlmage (select_material);

y s jc sje sje sje s j: sje sje sje sje sje sje sje sje sje sje s j: sje sje sje sje sje s jt sje sje sje sje sje sje sje sje s j : sje % sje sje sje sje

**** INSTANCE: Textl
sje sje sf: sje sje s f : sfe sfe sfc sje sje sje sje sje sje sje sfe aje sje sje s f : sje sje sje sje sje s}e sj: sje sf: sje s j: aje sfe sje sf: s je y

Makelnstance(Textl, Text);
Textl:X = 20;
Textl :Y = 384;
Textl :Width = 307;
Textl:Height = 38;
Textl :Visible = TRUE;
Textl:Title = "Snap Joint Configuration";
Textl :ShowBorder = TRUE;
Resetlmage (Textl);

**** INSTANCE: Text3
s je sje sfe s je sje sje sje sje sje sfe sje sje sje s je sje sje sfe sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sfe sje sfe sje s je ^

Makelnstance(Text3, Text);
Text3:X = 655;
Text3:Y = 384;
Text3:Width = 307;
Text3:Height = 38;
Text3: Visible = TRUE;
Text3:Titie = "Design Specifications";
Text3:ShowB order = TRUE;
Resetlmage (Text3);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

y *

INSTANCE: Text2
* * s |t * s i t sjc * s it * * * s it * * + * * * * sit * * * * sic s i t * Jlc Jjc y * =l'=i'=i«

Makelnstance(Text2, Text);
Text2:X = 348;
Text2:Y = 384;
Text2:Width = 307;
Text2:Height = 38;
Text2:Visible = TRUE;
Text2:Title = "Material Properties";
Text2:ShowBorder = TRUE;
Resetlmage (Text2);

y *

**** INSTANCE: Bitmapl
* y

Makelnstance(Bitmapl, Bitmap);
BitmapkX = 153;
Bitmapl :Y = 115;
Bitmapl :Visible = TRUE;
Bitmapl :FileName = snconst.bmp;
Bitmap l:FitToScreen = FALSE;
Bitmap l:Width = 307;
Bitmap l:Height= 192;
Resetlmage (Bitmapl);

y *

**** INSTANCE: stop
* y

Makelnstance(stop, Button);
stop:X = 384;
stop:Y = 288;
S t r tn * T it la — C tA n*

io o < jl iu w —

stop:Width = 192;
stop:Height = 38;
stop:Visible = TRUE;
stop:Action = stop;
stop:ShowBorder = TRUE;
Resetlmage (stop);

**** INSTANCE: configuration
* y

Makelnstance(configuration, Button);
configuration^ = 384;
configuration^ = 76;
configuration:Title = Configuration;
configuration:Width = 192;
configuration:Height = 38;
configuration:Visible = TRUE;
configuration:Action = config;
configuration:ShowBorder = TRUE;
Resetlmage (configuration);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

y ^ c ^ c j J c s f c ^ c s J c s j c s i c s l c s i e s j e ^ c ^ j j c s j e s j c ^ c s j c s i e ^ c ^ c s J c s i e ^ s i c s i c ^ ^ ^ c ^ c j j e ^ ^ c j i c ^ c s j c ^ c

n jc s j t s j o i : INSTANCE: NW_button

Makelnstance(NW_button, Button);
NW_button:X = 153;
NW_button:Y = 307;
NW_button:Title = "Nominal Wall";
NW_button:Widtn = 153;
NW_button:Height = 38;
NW_button: Visible = FALSE;
Resetlmage (NW_button);

sje aje sje 3jc sjc sje s}c ajc + sjc sje :je sje sje sje sje sje aje sje sje sje sje sje sje sje sje sje sje s>e sje sje sje sje sje sje

**** INSTANCE: proj_button
s jc s je s je s je s je s je s je s je s jc s je s jc s je s je s je s je s je s je s je s^ s je s je s jc s je s je s fe s je s jc s je s je s je s je s je s jc s je s je s je s je^

Makelnstance(proj_button, Button);
proj_button:X = 153;
proj_button:Y = 384;
proj_button:Title = Projections;
proj_button:Width = 153;
proj_button:Height = 38;
proj_button:Visible = FALSE;
proj_button:Action = projections;
Resetlmage (proj_button);

^ s j c sje sje sje sje sje sje sje sje sjc sje sje sje sje sje sjc sje sje sje sje sje sje sje sje sje sje sje sjc sje sje sic sje sje sje sje sje sjc

**** INSTANCE: dep_button
sjc s]c sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sje sjc sje sje sje sje sjc sje sjc sje sje sje sje sje s{e sje sje sje sjc sje j

Makelnstance(dep_button, Button);
dep_button:X = 153;
dep_button:Y = 460;
dep_button:Title = Depressions;
dep_button:Width = 153;
dep_button:Height = 38;
dep_button: Visible = FALSE;
Resetlmage (dep_button);

j sje sje sjc sje sje sje sje sjc sje sje sjc sje sjc sje sje sjc sje sje sje sje sje sje sje sje sje sjc sjc sje sje sje sjc :*e sje sje sje sjc sje

**** INSTANCE: sj_button

Makelnstance(sj_buttcn, Button);
sj_button:X = 384;
sj_button:Y = 364;
sj_button:Title = "Snap Joints";
sj_button:Width = 153;
sj_button:Height = 38;
sj_button:Visible = FALSE;
sj_button:Action = snap_joints;
Resetlmage (sj_button);

z.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ysjc s$e sje sje sje sje sjc sjc sje sjc sjc sje sjc sje sjc sje sic sje sje sjc sje sje sje sjc sjc sje sje sje sje sje sjc sje sje sje jjc sje sje

**** INSTANCE: ribs_button
sic sje sjesje sje sjc sje sje sjc sje sje sje * sje sje sje sje sjc ale sje * s*c sje * sje sje sje sje sje sje sje sjc sje sje sje sje s je ^

Makelnstance(ribs_button, Button);
ribs_button:X = 384;
ribs_button:Y = 422;
ribs_button:Title = Ribs;
ribs_button:Width = 153;
ribs_button:Height = 38;
ribs_button: Visible = FALSE;
Resetlmage (ribs_button);

j sje sjc sje sjc sje sjc sje sje sje sje sjc sjc sjc sic sjc sjc sje sjc sje sje sjc sje sje sjc sje sje sje sje sje sje sje sjc sjc sjc sjc sje sje

**** INSTANCE: cant_button
sje sje sje sjc sjc sje sjc sle sje sje sje sjc sje sje sje sje sje sjc sjc sje sjc sjc sje sjc sje sje sje sje sje sjc sje sjc sje sje sjc sje ajc yf

Makelnstance(cant_button, Button);
cant_button:X = 614;
cant_button:Y = 326;
cant_button:Title = Cantilever,
cant_button:Width = 153;
cant_button:Height = 38;
cant_button:Visible = FALSE;
cant_button:Action = start_cant;
Resetlmage (cant_button);

**** INSTANCE: tor_button
s jc s je s je s jc s jc s jc s jc s jc s je s jc s jc sS e s je s je s jc s jc s je s je s jc s je s je s jc s jc s je s je s je s je s je s jc s je s je s je s je s je s je s je s jey

Makelnstance(torjoutton, Button);
tor_button:X = 614;
tor_button:Y = 384;
tor_button Title = Torsional;
tor_button:Width = 153;
tor_button:Height = 38;
tor_button:Visible = FALSE;
Resetlmage (tor_button);

j sje sje sje sje sjc sjc sje s|c sjc sjc sjc sje sje sje sje sje sjc sje sje sjc sjc sje sjc sje sjc sje sje sje sje s|c sjc sje sjc sjc sje sje sje

**** INSTANCE: ann_button
s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s je s jc s je s jc s je s je s je s je s je s je s je s je s je s je s je s je s je s jc s jc s je s jey

Makelnstance(ann_button, Button);
ann_button:X = 614;
ann_button:Y = 441;
ann_button:Title = Annular;
ann_button: Width = 153;
ann_button:Height = 38;
ann_button: Visible = FALSE;
Resetlmage (ann_button);

g.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

^ s j e ^ s J c ^ c ^ s i e s f c s J c s j c s i c ^ c s i c s j e s i c s J e ^ j^ a l e j f e ^ e ^ e s i e s j c ^ c s i c s j c s j c s i c s l c ^ c ^ c ^ c ^ e ^ c s i c s i c ^

**** INSTANCE: reset
sje ale sje sje sje sje sje sje sje sje sle sje sje sje sje sje sje sje sje sje sje sje sje sje sjc sje A sje A sjc sje sje sjc sjc sje sje s jc ^

Makelnstance(reset, Button);
reset:X = 384;
resetrY = 245;
resetrTitle = Reset;
resetfWidth = 192;
resetiHeight = 38;
reset:Visible = TRUE;
reset:Action = reset;
Resetlmage (reset);

j j /L sje sjc sic sje sje sje sje sje sje sje sje sjc sje sje sje sje sje sjc sjc sjc sje sje sic sje sjc sjc sje sje sjc ale sje sje sjc sjc sje sjc

**** INSTANCE: Bayblend.FR.1439
sjc sje sje sje sjc sje sje sje sje sje sje sje sje sje sjc sje sje sje sje s j : 9{c sje sje sje sje sjc sje sje sje sje sje sje sje sje sje sje s je ^

Makelnstance(BaybIend.FR.1439, material);
Bayblend.FR. 1439:type = "ABS+PC Alloy";
Bayblend.FR. 1439:flexural_modulus = 360000;
Bayblend.FR. 1439:elongation = 3.5;
Bayblend.FR. 1439:mu_plastic_plastic = .75;
Bayblend.FR. 1439:mu_plastic_metal = .65;
Bayblend.FR.1439:tensile_stress = 7700;
Bayblend.FR. 1439:compressive_stress = 12600;

j sjc sje sjc sje sje sje sje sje sje sje sjc sjc sje sjc sje s j: sje sje sje sjc sje sje sje sje 9{e sjc sjc sje sjc sje sje sje sje sje s j: sjc sjc

**** INSTANCE: Calibre.800.10
sje sje s je s je s je s je s jc s jc s je s je s je s je s je s je s je s jc s je s jc^

Makelnstance(Calibre.800.10, material);
Calibre.800.10:type = PC;
Calibre.800.10:flexural_modulus = 360000;
Calibre.800.10:elongation = 6.5;
Calibre.800.10:mu_plastic_plastic = .55;
Calibre.800.10:mu_plastic_metal = .45;
Calibre.800.10:tensile_stress = 8700;
Calibre.800.10:compressive_stress = 14000;

J sje sjc sje sje s je sjc sje sje sje sjc sjc jjc jjc sje sje sje jjc sje sje sje sje sje sje sje sje sje sjc sje sjc sje sje sjc sje sje sje sje sjc

sje sje sjc sjc INSTANCE: Magnum.3661
sje sje sje s j : sje s{c sje sje sje sje sje sje sje sje sje sje sje sje sje sje sjc sje sje sje sje sje sje sje s j: sje sje sje sje sje sje sjc s je ^

Makelnstance(Magnum.3661, material);
Magnum.3661:type = ABS;
Magnum.3661:flexural_modulus = 340000;
Magnum.3661 :elongation = 2.3;
Magnum.3661 :mu_plastic_plastic = .75;
Magnum.3661 :mu_plastic_metal = .65;
Magnum.3661 :tensile_stress = 5000;
Magnum.3661:compressive_stress = 8800;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

^*************************************
**** INSTANCE: Pulse. 1725
sjc sjc j(c sjc sjc ajc sjc sjc sjc sjc sjc sjc sjc ijcsjc sjc sjc sjc sjc sjc sjc nfe sjc sjc sjc ;jc sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc j

Makelnstance(Pulse. 1725, material);
Pulse.l725:type = "ABS+PC Alloy";
Pulse.1725:flexural_modul us = 400000;
Pulse. 1725:elongation = 4.0;
Pulse.l725:mu_plastic_plastic = .75;
Pulse. 1725:mu_plastic_metal = .65;
Pulse. 1725:tensile_stress = 8400;
Pulse. 1725:compressive_stress= 11000;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

JJf sic sic Sic * sjc sjc * * * * sic sic * ajc sic * ajc ajc ajc * * ajc ajc a|c * ajc ajc ajc ajc ajc ajc ajc ajc ajc ajc ajc afc ajc ajcajc ajc a|e ajc ajc ajc ajc sjcaje:ajc ajc ajc ajc afc ajc ajc ajcy

/** ALL RULES ARE SAVED BELOW **/
* sje sjc sjc * * * * sje sjc * * * * * * * sje * sje * * * * * * * y

J ^ l s|e 5(e s(e * * s(c ale sjc sje * s|e ajc afc ajc ajc afc a(e sje ale sjc afc * % ajc afc * ale * sje afc * * * afc * afc

**** RULE: ckdesign
afc * afc afc :fc afc afc afc afc afc sje afc sjc * afc afc afc afc afc afc afc afc afc sic afc afc * afc afc sje afc afc a»e a*e afc ale a fc^

MakeRule(ckdesign, 0,
desigmstrain < desigmallowstrain

And (design:sepforce < cantilevensepforce Or cantilevenself_locking #= yes
Or cantilevensepforce = 0)

And (designrmateforce < cantilevenmateforce Or cantilevenmateforce = 0)
And designrlength <= cantilever.maxlength,

design:criteria = good
);

SetRulePriority(ckdesign, 12);

^ a f c afc afc afc afc afc afc afc afc afc afc afc afc afc afc sje afc afc afc afc afc afc afc sje aft afc afc afc sfc 5*: afc afe sjc ajc afc afc afc

**** RULE: ckstxain
afcafcafc jfcafcafcafcafcafcafcpfcafcafcafcafcafcafcafcafcafcafcafcafcafcafcafcafcafcsfcafcafcafcjfcafcafcafcajy

MakeRule(ckstrain, [],
design:strain > design :allowstrain,
{
cantilevenundercut = cantilever:undercut /1.1;
SendMessage(cantilever, calculate);
});

SetRulePriority(ckstrain, 10);

❖ % % ❖ ❖ ❖ ̂ ❖ * =*= ❖ ̂ # H5 ❖ * * ❖ H*+* * * H6 ’i' ’i' * + H6 ̂ ̂ ^
**** RULE: ckstrain2
afc a j y

MakeRule(ckstrain2, [],
design:strain > design:allowstrain,
{
cantilevenlength = cantilever:!ength *1.1;
SendMessage(cantilever, calculate);
});

SetRulePriority(ckstrain2,5);

^ a f c afc 3*s afc afc afc afc afc afc afc afc afc afc sjc sje afc afc afc sje s it sje afc afc afc afc % afc afc afc afc afc afc afc sje afc afc sjc

**** RULE: ckmateforce
afc afc afc jjc afc afc afc afc afc afc sjc afc % sje sjc sje afc afc aSc afc sjc s«e >je jjc sjc jjc sjc sic % ij

MakeRule(ckmateforce, 0,
cantilevenmateforce != 0 And design:mateforce > cantilevenmateforce,
{
cantilevenlength = cantilevenlength *1.1;
SendMessage(cantilever, calculate);
});

SetRulePriorityC ckmateforce, 10);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ajc ajc aje sje s{c sjc sje ajc sjc aje aje aje aje sjc ajc aje sje sje sje sje >je sRH« afc *?e £ *je H6 *R ̂ ̂ %

**** RULE: ckmateforce2
aje aje afc a): sjc sjc aje aje aje sjc sje ajc aje sjc aje aje sje sfs aje aje 3je ajc aje aje sje aje sje aje % sje sje aje sje aje sjc ale a jc ^

MakeRule(ckmateforce2, □,
cantilevenmateforce != 0 And design:mateforce > cantilevenmateforce,
{
cantilever.Iead_angle = cantilevenlead_angle / 1.1;
SenaMessageC cantilever, calculate);
});

SetRulePriorityC ckmateforce2,5);

^ aje aje aje aje ajc aje aje aje ajc aje ale afc aje a}e aje ajc sje aje aje afc * aje aje aje aje ajc ajc aje aje aje aje aje aje aje aje sje afc

**** RULE: cksepforce
ajc ajc ajc ajc ajc ale ajc sjc ajc ajc ajc ajc ajc ajc afc aje sic ale ajc ajc afc aje sjc ajc ajc afc ajc ajc afc ajc ajc sjc ajc ajc ajc ajc j

MakeRule(cksepforce, [],
cantilevensepforce != 0 And cantilever:self_locking #= no

And design:sepforce > cantilever:sepforce,
{
cantilevenlength = cantilevenlength * 1.1;
SendMessage(cantilever, calculate);
});

SetRulePriorityC cksepforce, 10);

^ a je ajc aje aje aje aje sje aje aje sje aje aje aje aje ajc sjc aje sjc sje sje aje ajc aje aje aje aje aje aje sje aje aje sje ajc aje aje aje aje

**** r u LE: cksepforce2
aje aje aje aje ajc aje ajc aje ajc a jt aje aje sje ajc ajc aje ajc aje ajc ajc ajc ajc aje ajc ajc sje aje aje aje aje aje ajc aje aje ajc aje a je ^

MakeRule(cksepforce2, [],
cantilevensepforce != 0 And cantilever:self_locking #= no

And design:sepforce > cantilever:sepforce,
{
cantilever:retum_angle = cantilever:retum_angle / 1.1;
SendMessage(cantilever, calculate);
});

SetRulePriorityC cksepforce2,5);

^ a je aje aje aje aje aje aje ajc aje ajc ajc ajc ajc aje ajc aje aje aje aje aje aje ajc aje ajc aje aje aje aje aje a|e aje aje aje aje a|e ajc a|e

**** RULE: cklength
ajea jea jeajeajca jea jea jea jea jea jea jea jesjca jca jea jca jea jea jea jea jea jesjea jea jca jea jea jea jea jea je sjea jea jea jea le^

MakeRule(cklength, □,
NotC Null?C cantilevenmaxlength)) And cantilevenlength

> cantilevenmaxlength,
{
cantilevenlength = cantilevenmaxlength;
SendMessage(cantilever, calculate);
DeactivateRule(cktensile_stress);
DeactivateRule(ckcompressive_stress);
DeactivateRule(ckmateforce);
DeactivateRule(cksepforce);
DeactivateRule(ckstrain2);
});

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

J$t aje s{e sje sje sje sje sjc sje sje sjc sje sje sjesjesje sje sje * sje sje sjc sje sje sje ajc >je % * sj< H6 * * * * * Jje

**** RULE: cktensile
sje sje sje aje sjc sje jjc sje sje sje afc ajc sje sje sje sje sje sje sje sje sje % sje sje sje sjc sje j*c sje sje sje sjc jjc sjc ajc sjc s je ^

MakeRule(cktensile, □,
design:tensile_stress > cantilever:material_type:tensile_stress

And cantilever:self_locking #= no,
{
cantiiever:retum_angie = cantilever:retum_angle /1.1;
SendMessage(cantilever, calculate);
});

SetRulePriorityC cktensile, 10);
^ s j c sje sje sje sje sje sje aje sje sje sje sje s^e sje sje sje sje sjc sje sje sje sje sje sje sje sje sjc ajc sje sje sjc sje sjc sje sje sje sje

**** RULE: ckcompressive
sje ijc * sje * * sje * * sjc * sje * sje sje * :je * * * * ate sic * sjc * * * * sje * * sje sje sje * s je ^

MakeRule(ckcompressive, □,
design:compressive_stress > cantilever:material_type:compressive_stress,
{
cantilever:lead_angle = cantilever:lead_angle /1.1;
SendMessage(cantilever, calculate);
});

SetRulePriorityC ckcompressive, 5);
j sje sje s|c sje sjc sje sje sje sje sje sje sje sje jjc sje sje sje ajc sje 9$c sje sje sje sje sje sje sjc sje sje sje sje sje sjc sje sjc sjc

**** RULE: cktensile_stress
sjc sjc sje sje sje sje sje sje sje sje sje sje sjc sjc sje sje sje sje sje sje sje sje sje sje sjc s j: sje sje sje sje aje sje sje sje sje sje s jc ^

MakeRuleC cktensile_stress, [],
design:tensile_stress > cantilever:material_type:tensile_stress

And cantilevenselfjocking #= no,
{
cantilevenlength = cantilevenlength *1.1;
SendMessageC cantilever, calculate);

SetRulePriorityC cktensile_stress, 5);
jj y sje sjc sje sje s je s jc s fe s je s je s jc s je s jc s je s je s je s je s jc s^ s je s je s jc s jc s jc s je s jc s je s je s je s je s je s je s je s jc s je s ie s je s je

j **** RULE: ckcompressive_stress
g sje sjc sjc sje sje sje sje sje sjc sje sje sje sje sje sje sje sje 3je sje sje sje sje sje sje sje sje sje sje sje sje sje sjc sje sje sje s je s je y

| MakeRuleC ckcompressive_stress, [],
\ design:compressive_stress > cantilever:material_type:compressive_stress,
3 <| cantilevenlength = cantilevenlength * 1.1;
s SendMessageC cantilever, calculate);

});
s SetRulePriorityC ckcompressive_stress, 10);

^ s j e sje sjc sje sje sjc sjc sje sjc sje sjc s j: sjc sje sje sjc sje s j: sje sje sje sje aje sje sje sje sje sje sjc sje sje sje sje sje sje sjc sje

RULE: smallest_lead_anglesjc sjc sje sjc

sje sje sje sjc sje sjc sje % sje sje sjc jjc sje sjc sje sje sje sjc aje sje sje sje sje sje sje s>c jje jje j}s sjc s|« /

MakeRuleC smallest_lead_angle, [],
cantilever:lead_angle <10,
{
cantilever:lead_angle = 10;
PostMessage("Lead angle must be at least 10 deg");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SendMessageC cantilever, calculate);
});

SetRulePriorityC smallest_lead_angle, 20);
y*************************************
**** RULE: largest_lead_angle
* y

MakeRuleC largest_Iead_angle, 0 ,
cantilevenlead_angle > 35,
{
cantilever.lead_angle = 35;
PostMessageC "Lead angle must be less than 35 deg");
SendMessageC cantilever, calculate);
});

SetRulePriorityC largest_lead_angle, 20);
j sje * ajc * sje * sje sjc sje * jje ajc sjc sjc * * * * * * * * * * * * * * * * * * % * sje * sjc

**** RULE: ckretum_angle
*************************************^

MakeRuleC ckretum_angle, Q,
cantilever:retum_angle < cantilever:lead_angle,
{
cantilever:retum_angle = cantilevenlead_angle;
PostMessageC "Return angle must not be smaller than lead angle");
SendMessageC cantilever, calculate);
});

SetRulePriorityC ckretum_angle, 15);
j * sje * * * * * * * * sje afc * * * * * * * * * * * * * * ^ ^ ^ ^ * £ * * * £ *

**** RULE: ckself_locking
afc a>e * * * * * * * * % * * * * sjc sje sje * * * * sjc * a*c * * * * * sje * % * sje * * ^

MakeRuleC ckself_locking, [],
cantilever:self_locking #= yes And cantilever:retum_angle < GlobaLangle,
{
cantilever:retum_angle = Global:angle;
PostMessageC "Return angle set to minimum allowable");
DeactivateRule(ckself_locking);
DeactivateRule(cknotselfjocking);
});

SetRulePriorityC ckselfjocking, 20);

**** RULE: cknotself_locking
* * * * * * * jje * * sje * sje sic sjc sje sjc * * * sje * sic * sje * * jje sjc sjc sjc sjc * * jjc sje * y

MakeRuleC cknotself_locking, [],
cantilevenselfjocking #= no And cantilever:retum_angle > Global:angle,
{
PostMessageC "Return angle must be smaller");
cantilever:retum_angle = 45;
SendMessageC cantilever, calculate);
DeactivateRule(ckselfjocking);
DeactivateRule(cknotselfjocking);
}) ;

SetRulePriorityC cknotselfjocking, 20);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11
X1

 aS
alB

SH
M

119

1!
UB

&H
I©

HI

HI
KE

*B
Bu

aa
iiM

™

99

J * ajc * * Sit * * * s j c jjc s i c * 3|c * sjc H e * * * * * * * * * * * * s i s * * * * * * * * * * * * * * * * * * * * * sic ajc s i t * * * * y

/** ALL GOALS ARE SAVED BELOW **/

y * * * * * sjc * * * * * sje * * * * * sje * * * * * * * * * sjc * * * * * * * * *

**** GOAL: gooddesign
* * * * * > C * > C > < * * > < * y

MakeGoal(gooddesign,
designrcriteria #= good);

y * y

/** ALL FUNCTIONS ARE SAVED BELOW **/
y * y

y *
**** FUNCTION: Start
* y

MakeFunction(init, □,
{
SetWindowBackground(SESSION, 0 ,0 , 100);
RemoveWindowMenu(SESSION);
MaximizeWindow(SESSION);
FreezeWindow(SESSION);
resetO;
});

yT*:* * * * * * * * * * * * * * * *

**** FUNCTION: config
* y

MakeFunction(config, [],
{
SendMessageC Globakfeature, init);
SendMessageC Global:feature, output_config);
ClearTranscriptImage(output_soln);
});

y *

**** FUNCTION: change_geometry
* y

MakeFunction(change_geometry, [],
{
SendMessageC Globakfeature, change_geometry);
SendMessageC Global:feature, output_config);
ClearTranscriptlmageC output_soln);
});

y *

FUNCTION: select
* y

MakeFunction(select, □,
{
ClearTranscriptlmageC output_mat);
SendMessageC material, select);
If Not(Global:feature:materiaI_type #= "NEW MATERIAL DATABASE")

Then SendMessage (material, output_mat)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

100

Else {
SendMessage (material, select);
SendMessage (material, outout_mat);

};
});

^ ^ s < > c ^ > « { > c > < 3 < > < s < s jc 5 i c 5 < a < > c « > c j l c s < s < s < 5 ic > c 3 ic > « > c j !c > c s jc 5 l c : i c : 'c j !6 s j c > jc 5 lc s lc

**** FUNCTION: process
sjc sjc jjc s*c jjc i^c sjc j

MakeFunction(process, []>
{
PostBusy(O N);
ClearTranscriptlmageC output_config);
ClearTranscriptlmageC output_soln);
SendMessage(Global:feature, calculate);
designrcriteria = NULL;
Assert(cantilever:lead_angle);
AssertC cantilever:retum_angle);
AssertC cantilever:self_locking);
AssertC cantilevenmateforce);
AssertC design:strain);
SetForwardChainMode(BESTFIRST);
ForwardChain(gooddesign, Global:RuleSet);
SendMessage(Globalrfeature, output_config);
SendMessageC Globalrfeature, output_soln);
write_feadata();
PostBusy(OFF);
});

y s jc s jc s jc s je s jc s j e s j c ^ c s jc s jc ^ c ^ c s ic ^ c s jc s jc s jc ^ c s jc s je s j c s jc ^ c s je s ^ ^ c ^ s j e s je ^ c ^ c s jc ^ e ^ c ^ c s je s jc

**** FUNCTION: reset
s je s tG s je s jc s jc sJcs je s jc s je s jc s je s je s jc s jc s jc s jc s jc s je s je s jc s je s jc s jc s ic s je s je s jc s jc s je s je s je s je s jc s jG s jc s jo je ^

MakeFunctior/ reset n
 V*~*

Hidelmage(Bitmapl);
HidelmageC configuration);
HidelmageC geometry);
Hidelmage(select_material);
Hidelmage(process);
Hidelmage(reset);
HidelmageC stop);
HidelmageC T extl);
HidelmageC Text2);
HidelmageC Text3);
HidelmageC Text4);
HidelmageC output_config);
Hidelmage(output_mat);
HidelmageC output_soln);
ShowImage(dep_button);
ShowImageC proj_button);
ShowImage(NW_button);
});

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

^s je sje sje sje sje sje ate sjc sje sje sje sje sjc s|e sjc sje sje sje sje sje sje sie sjc sje sle sje sje sje sje s*c sje alt sje sje sje sjc sje

FUNCTION: stop
sje sje afc * sjc sje sjc sje sje sje sje sje sje sje sje sje sje sje sje sje sje sjc sje s j: sje sjc sje :je sje sje sje sje sje sje sje sje s je ^

MakeFunction(stop, [],
Exit());

y *

**** FUNCTION: projections
* y

MakeFunction(projections, 0,
{
ShowImage(sj Jsutton);
ShowImage(ribsjsutton);
});

j s$t sje sjc sje sje sjc sje sje sje sje sje sje sje sje sje sje sje sje sje sje sfc sje sje sje sje sje sje sje sjc sje sjc sjc sje sje sje sje sje

**** FUNCTION: snap Joints
sjc sjc s}c sjc s|c sjc sjc sje sje sjc sje sjc sjc sjc sjc sjc sjc sjc sjc s}t sjc sjc sjc sje sje sjc sje sjc sjc sjc sjc sjc sjc sjc sjc sjc sjc j

MakeFunction(snapjoints, [],
{
ShowImage(cant_button);
ShowImage(torjsutton);
ShowImage(ann_button);
});

^ s j e * ajc sjc sje sjc sje sje s|e sjc sje sje sjc sje sje sle sje sic sje sje sje sje sje sje sjc sjc sje sjc sjc ajc sjc s}c sje sje sje sic

**** FUNCTION: start_cant
sjc sje sje sjc sje sjc sjc sje sje sje sje sje sje sjc sje sjc sje sje sje sje sjc sjc sje s«e sje s £ sje sje sjc sjc sjc sje sje sjc sjc sjc s je ^

MakeFunction(start_cant, Q,
{
GIobal:feature = cantilever;
Text4:Title = "Snap Joint Demonstration";
Bitmapl :FileName = snconst.bmp;
Textl:Titie = "Snap Joint Configuration";
SetValue(GlobakRuleSet, ckstrain, cktensile_stress, ckcompressive_stress,

ckdesign, cktensile, ckcompressive, smallest_lead_angle,
largest_lead_angle, ckretum_angle, ckselfjocking,
cknotselfjocking, ckmateforce, ckmateforce2, cksepforce,
cksepforce2, ckstrain2, cklength);

Hidelmage(NWJmtton);
Hidelmage(proj Jsutton);
HidelmageC dep_button);
HidelmageC sj_button);

| HidelmageC ribsjmtton);
* HidelmageC cantjmtton);
j HidelmageC torjsutton);
1 HidelmageC ann_button);
3 ClearTranscriptlmageC output_config);
| ClearTranscriptlmageC output_mat);
2 ClearTranscriptlmageC output_soln);
| ShowImage(Text4);
; ShowImage(Bitmapl);
% ShowImage(configuration);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ShowImage(geometry);
ShowImage(select_material);
ShowImage(process);
ShowImage(reset);
ShowImage(stop);
ShowImage(T extl);
ShowImage(Text2);
ShowImage(Text3);
ShowImage(Text4);
ShowImage(output_config);
ShowImage(output_mat);
ShowImage(output_soln);
});

**** FUNCTION: write_feadata
sJesJeaJesJes^siesie sJesJes jesiesJesJesie siesJesJesJesJesfcsie sie sfc sJcsiesJesiesie sie sie sie s^sJesJesJesJesie^

MakeFunction(write_feadata, Q,
{
OpenWriteFile(feadata.txt);
WriteLine("K: /CO U 1 snapjoint");
WriteLine(”Kcantileverrlength, cantileverrvvidth, cantileventhickness,

cantilevenundercut, cantilever:lead_angle, cantilever:retum_angle);
WriteLine("K: PR E");
WriteLine("E: **** END OF SESSION ****");
CloseWriteFile();
Execute("dos2aix", "feadata.txt", "feadata.prg");
});

J% l sje * sje sje sje a t: sle sle sle sle sjc sje sje sje sje sje s|e sje sje sje ate sje sje aje sje sje sje sje 3jc 5je sje sje sjc sje sje sje

**** FUNCTION: loaddb
s jc s je i je s je s j is jc s je jjc s je s je a jc s jc s je s je s le s jc s jc s je s je s je s je s je s jc s jc ije s jc a je ije s je s je s je s jc s je s je i^ ii je s je ^

MakeFunction(loaddb, [],
{
Execute (“createdb.bat”);
ForAlI [xlmaterial]

Deletelnstance(x);
DBOpenFile(material.dbf);
DBGetFieldNames(Global:fieldnames);
RemoveFromList(Global:fieldnames, NAM E);
GetSlotList(material, Global:slotnames);
DBSetMapParameters(Global:slotnames, Global:fieldnames);

j Globahnum = DBGetNumberOfRows();
I For x [1 Globaknum]

{
GIobal:instance = DBReadCell(x, 1);
Makelnstance(Global:instance, material);
DBMapRowToInstance(Global:instance);
If (Global:instance:tensile_stress = 0 Or Global:instance:elongation = 0

Or Global:instance:flexural_modulus = 0
Or Global:instance:compressive_stress = 0
Or Global:instance:mu_plastic_plastic = 0
Or Global:instance:mu_plastic_metal = 0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Then PostInputForm("Enter Missing Material Properties for "
Globalrinstance, Globalrinstancerflag, "Delete from material selection list?",
Global:instance:tensile_stress, "Tensile Stress @ yield",
Global:instance:elongation, "Elongation @ yield",
Global:instance:flexural_modulus, "Flexural Modulus",
Global:instance:compressive_stress, "Compressive Stress @ yield”,
Global:instance:mu_plastic_plastic, "Coef of Friction (plas/plas)",
Global:instance:mu_plastic_metal, "Coef of Friction (plas/metal)”);

If (Not(Null?(Global:instance:flag)) And Global:instance:flag #= yes)
Then Deletelnstance(Globalrinstance);

};
DBCloseFile(materiaLdbf);
});

**** FUNCTION: setup_graphics
aje sje sje 3*e a*e s*c sje afc sje sje sje sjc a*e sjc s*e sjc sjc afe a*e ^Jc ajc a*e sjc a*' a*c sjc 3*e sje ale aje afc aje sic a*c^

MakeFunction(setup_graphics, [],
{
Globahxscreen = GetScreenWidth();
Globalryscreen = GetScreenHeight();
ButtomWidth = .30 * Globahxscreen;
Button:Height = .05 * Globalryscreen;
BitmaprWidth = .30 * Globahxscreen;
BitmaprHeight = .25 * Globalryscreen;
TranscriptrWidth = .30 * Globahxscreen;
TranscriptrHeight = .35 * Globalryscreen;
Text:Width = .30 * Globahxscreen;
TextrHeight = ButtonrHeight;
ButtonrX = 2 * BitmaprWidth;
configurationrY = ButtonrHeight * 2;
geometry:Y = ButtonrHeight * 3.1;
select_material:Y = ButtonrHeight * 4.2;
processrY = ButtonrHeight * 5.3;
resetrY = ButtonrHeight * 6.4;
stoprY = ButtonrHeight * 7.5;
Bitmap T.X = BitmaprWidth / 2;
BitmaplrY = ButtonrHeight * 3;
TextlrX = Globahxscreen / 50;
TextlrY = ButtonrHeight * 9;
Text2:X = TextlrX * 2 + TextrWidth;
Text2:Y = ButtonrHeight * 9;
Text3:X = TextlrX * 3 + TextrWidth * 2;
Text3:Y = ButtonrHeight * 9;
Text4:X = BitmaprWidth / 2;
Text4:Y = ButtonrHeight * 2;
output_config:X = TextlrX;
output_config:Y = ButtonrHeight * 10;
output_mat:X = Text2:X;
output_matrY = ButtonrHeight * 10;
output_soln:X = Text3rX;
output_soln:Y = ButtonrHeight * 10;
NW_button:Width = ButtonrWidth / 2;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

NW_button:X = ButtonrWidth / 2;
NW_button:Y = Globalryscreen / 2 - ButtonrHeight * 2;
proj_buttonr Width = ButtonrWidth / 2;
proj_buttonrX = ButtonrWidth / 2;
proj_button.*Y = Globalryscreen 1 2;
dep_button:Width = ButtonrWidth / 2;
dep_button:X = ButtonrWidth / 2;
dep_buttonrY = Globalryscreen / 2 + ButtonrHeight * 2;
sj_buttonrWidth = ButtonrWidth / 2;
sj_buttonrX = ButtonrWidth * 1.25;
sj_button:Y = proj_buttonrY - ButtonrHeight / 2;
ribs_buttonrWidth = ButtonrWidth / 2;
ribs_button:X = ButtonrWidth * 1.25;
ribs_buttonrY = proj_buttonrY + ButtonrHeight;
cant_button:Width = ButtonrWidth / 2;
cant_buttonrX = ButtonrWidth * 2;
cant_buttonrY = proj_buttonrY - ButtonrHeight * 1.5;
tor_buttonr Width = ButtonrWidth / 2;
tor_button:X = ButtonrWidth * 2;
tor_buttonrY = proj_buttonrY;
ann_buttonrWidth = ButtonrWidth / 2;
ann_buttonrX = ButtonrWidth * 2;
ann_button:Y = proj_button:Y + ButtonrHeight * 1.5;
});

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B

RULE TRACE EXAMPLES

TRACE: CONFLICT RESOLUTION / BEST FIRST

:ilevv*/a/37«£_
' ' ckrm tvr*

itifow.
'•c x a o isa
•ckdm sig
c k io a s ti

itilevv- e k se p fo
*-;• ckta a sH

‘• d x a p fo
>c*dmsig
\c k s trm a — cantilov

itilov --c k /a n g t
,c k d * s i$

u d tstra in —contilev
itilavr—cktoagb

e5i9K?*. / I
c * su ^ . ? ' *

'design:r.
'c fe ftsu i—centilov—-ofc/if/»OT>C , . / • e k tfn ig

^dotign:«<, •

iC a n ti l® v *

. . r c a n t i l w^d o c ig n :r . /
'•c J ts tra m ^ ck ffestQd̂esign:*.'cfotfaa

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 75.
Asserting: cantilever:self_locking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE

Evaluating: cantilever.lead_angle
Relevant rules:

small est_lead_angle largestJead_angle ckretum_angle
Testing Rule: smallest_Ieau_angle FALSE
Testing Rule: largestjead_angle FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilever.retum_angle

Relevant rules:
ckselfjocking cknotselfjocking ckretum_angle

Testing Rule: ckselfjocking FALSE
Testing Rule: cknotselfjocking FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilevenselfjocking

Relevant rules:
ckselfjocking cknotselfjocking ckdesign cktensile cksepforce cktensile_stress

r*VQPr>f"nrc'p<7
Testing Rule: ckselfjocking FALSE
Testing Rule: cknotselfjocking FALSE

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

106

Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.108000.
design:strain is set to 0.044223.
design:allowstrain is set to 0.027300.
design:mateforce is set to 62.437463.
design:sepforce is set to -124.921366.
design:tensile_stress is set to -1998.741856.
design:compressive_stress is set to 998.999408.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.742500.
design:strain is set to 0.036548.
design:ailowstrain is set to 0.027300.
design:raateforce is set to 46.910274.
design:sepforce is set to -93.855440.
design:tensile_stress is set to -1501.687040.
design:compressive_stress is set to 750.564384.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.098182.
design:strain is set to 0.033227.
design:allowstrain is set to 0.027300.
design:mateforce is set to 42.647684.
design:sepforce is set to -85.327090.
design:tensile_stress is set to -1365.233440.
design:compressive_stress is set to 682.362944.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.816750.
design:strain is set to 0.027460.
design:allowstrain is set to 0.027300.
design:mateforce is set to 32.041453.
design:sepforce is set to -64.106737.
design:tensile_stress is set to -1025.707792.
design:compressive_stress is set to 512.663248.

Evaluating: cantilevenlength
Relevant rules:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

107

cklength
Testing Rule: cklength TRUE

cantilevenlength is set to .75.
design:strain is set to 0.032565.
designrallowstrain is set to 0.027300.
designrmateforce is set to 41.380015.
design:sepforce is set to -82.790807.
design:tensile_stress is set to -1324.652912.
design:compressive_stress is set to 662.080240.
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.089256.
design:strain is set to 0.029604.
design:ailowstrain is set to 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to -75.262982.
design:tensile_stress is set to -1204.207712.
design:compressive_stress is set to 601.880016.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

P d l o t n n l - m l a c *
A W 1 W * (u i w & U A W a> >

ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.081142.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
design:mateforce is set to 34.199344.
design:sepforce is set to -68.424126.
design:tensile_stress is set to -1094.786016.
design:compressive_stress is set to 547.189504.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: aesigmstrain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign TRUE
designxriteria is set to good.

Done forwardChaining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TRACE: CONFLICT RESOLUTION / BREADTH FIRST
.sm a ffe s

''c&retxr*

c a n blsvK
" 'c ka o tsa
iC&dmsig
cklBBSH

r'lev*—c k sc p fo
'i'cktoosd

'•ckso p fo
:dkd*stfi
leJtstra im cantilav

ililav— c k /a a g k
,c& d*xt$
iickstrsin—cantilev

\ • ; .cnntjTev<— ofc5a»9J>

„ . / / /**”*-datign:*. f <cantiIov»
''d ts ir o m — c o n \i\e v -m'e M e a g tL . f - d d e s ig

. yC&ntilov*

xdecign:t*. ;*■ ckstro m

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 75.
Asserting: cantilevenselfjocking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BREADTHFIRST IGNORE

Evaluating: cantilever.lead_angle
Relevant rules:

sm allest_lead_angle largestjead_ande ckretum_angle
lesting Rule: smallest_lead_angle FALSE
Testing Rule: largestJead_angle FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilevenretum_angle

Relevant rules:
ckself_locking cknotselfjocking ckretum_angle

Testing Rule: ckselfjocking FALSE
Testing Rule: cknotselfjocking FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilevenselfjocking

Relevant rules:
ckselfjocking cknotselfjocking ckdesign cktensile cksepforce cktensile_stress

cksepforce2
Testing Rule: ckselfjocking FALSE
Testing Rule: cknotselfjocking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensiie_stress FALSE
Testing Rule: cksepforce2 FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.108000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

109

designrstrain is set to 0.044223.
designrallowstrain is set to 0.027300.
designrmateforce is set to 62.437463.
design:sepforce is set to -124.921366.
design:tensile_stress is set to -1998.741856.
design:compressive_stress is set to 998.999408.

Testing Rule: ckstrain2 TRUE
cantilevenlength is set to 0.742500.
designrstrain is set to 0.036548.
designrallowstrain is set to 0.027300.
designrmateforce is set to 46.910274.
designrsepforce is set to -93.855440.
design:tensile_stress is set to -1501.687040.
designrcompressive_stress is set to 750.564384.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: cantilevenlength

Relevant rules:
cklength

Testing Rule: cklength FALSE
Evaluating: designrstrain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.098182.
designrstrain is set to 0.033227.
designrallowstrain is set to 0.027300.
designrmateforce is set to 42.647684.
designrsepforce is set to -85.327090.
design:tensile_stress is set to -1365.233440.
design:compressive_stress is set to 682.362944.

Testing Rule: ckstrain2 TRUE
cantilevenlength is set to 0.816750.
designrstrain is set to 0.027460.
designrallowstrain is set to 0.027300.
designrmateforce is set to 32.041453.
designrsepforce is set to -64.106737.
design:tensile_stress is set to -1025.707792.
design:compressive_stress is set to 512.663248.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: cantilevenlength

Relevant rules:
cklength

Testing Rule: cklength TRUE
cantilevenlength is set to .75.
designrstrain is set to 0.032565.
designrallowstrain is set to 0.027300.
designrmateforce is set to 41.380015.
designrsepforce is set to -82.790807.
design:tensile_stress is set to -1324.652912.
design:compressive_stress is set to 662.080240.
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.089256.
design:strain is set to 0.029604.
design:allowstrain is set to 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to -75.262982.
design:tensile_stress is set to -1204.207712.
design:compressive_stress is set to 601.880016.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.081142.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
design:mateforce is set to 34.199344.
design:sepforce is set to -68.424126.
design:tensile_stress is set to -1094.786016.
design:compressive_stress is set to 547.189504.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign TRUn
design:criteria is set to good.

Testing Rule: ckstrain FALSE
Done iorwardChaining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I l l

TRACE: CONFLICT RESOLUTION / DEPTH FIRST

jc n n lit3ev»~ c fc sep ta
'i 'c k ts c s B

''c ftM o p ia

•ck d a sig
iofcrfraw*—cairtilov

itilev— c k fe a g l
.ck d m tig

U ckstra in — cantilev

j .c k d a s ig
itilov

;c k d e s ig

.. ckdm sijg
''‘ckdrata

Asserting: cantilever:lead_angle as 35.
Asserting: cantilevenretum_angle as 75.
Asserting: cantilevenselfjocking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: DEPTHFIRST IGNORE

Evaluating: cantilevenlead_angle
Relevant rules:

smallestjead_angle largestJead_angle ckretum_angle
Testing Rule: smallest Jead_angle FALSE
Testing Rule: largest Jead_angle FALSE
Testing Rule: ckretum_angle fALSE
Evaluating: cantilevenretum_angle

Relevant rules:
ckselfjocking cknotselfjocking ckretum_angle

Testing Rule: ckselfjocking FALSE
Testing Rule: cknotselfjocking FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilever:selfJocking

Relevant rules:
ckselfjocking cknotselfjocking ckdesign cktensile cksepforce cktensile_stress

cksepforce2
Testing Rule: ckselfjocking FALSE
Testing Rule: cknotselfjocking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktehsile_stress FALSE
Testing Rule: cksepforce2 FALSE
Evaluating: desigmstrain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.108000.

a
as
m

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

112

designrstrain is set to 0.044223.
designrallowstrain is set to 0.027300.
designrmateforce is set to 62.437463.
designrsepforce is set to -124.921366.
design:tensile_stress is set to -1998.741856.
designrcompressive_stress is set to 998.999408.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.742500.
designrstrain is set to 0.036548.
designrallowstrain is set to 0.027300.
designrmateforce is set to 46.910274.
designrsepforce is set to -93.855440.
design:tensile_stress is set to -1501.687040.
design:compressive_stress is set to 750.564384.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: designrstrain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Ruler ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.098182.
designrstrain is set to 0.033227.
designrallowstrain is set to 0.027300.
designrmateforce is set to 42.647684.
designrsepforce is set to -85.327090.
design:tensile_stress is set to -1365.233440.
design:compressive_stress is set to 682.362944.

Evaluating: cantilevenundercut
■polAvprit nilAC*

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.816750.
designrstrain is set to 0.027460.
designrallowstrain is set to 0.027300.
designrmateforce is set to 32.041453.
designrsepforce is set to -64.106737.
design:tensile_stress is set to -1025.707792.
design:compressive_stress is set to 512.663248.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength TRUE

cantilevenlength is set to .75.
designrstrain is set to 0.032565.
designrallowstrain is set to 0.027300.
designrmateforce is set to 41.380015.
designrsepforce is set to -82.790807.
design:tensile_stress is set to -1324.652912.
design:compressive_stress is set to 662.080240.
Deactivating Rule: cktensile_stress.
Deactivating Ruler ckcompressive_stress.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.089256.
design:strain is set to 0.029604.
design:allowstrain is set to 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to -75.262982.
design:tensile_stress is set to -1204.207712.
design:compressive_stress is set to 601.880016.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.081142.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
design:mateforce is set to 34.199344.
design:sepforce is set to -68.424126.
design:tensile_stress is set to -1094.786016.
design:compressive_stress is set to 547.189504.

ijv tuuau iig . vcuiLij.ovui.uuuc/ivut.

Relevant rules:
NONE

Evaluating: design:strain
Relevant rales:

ckdesign ckstrain
Testing Rule: ckdesign TRUE

designxriteria is set to good.
Done forwardChaining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

114

TRACE: CONFLICT RESOLUTION / SELECTIVE
jSmaffi

jContiie*- forget
'c k r fff*
,-c k sa A

cantiie. „
' C & M O t

■ckgfos
:: ck /em

cantilc*- cA se,s
Nekton
'c k s e p
.c k d e *

* o (« i h 3
‘desigt

cantilc

can tile
*dkdds

jcontile
^ e k d e s

xantilc

* T S a c ig

.ckdes

ckskiL̂desic
c k sd a

: icantilc

“H o tr J . /
•. N > 9 i i g p „

c k d o t
icantilc

* *• %de»igr.- ckstra
‘C K S tT A

•ck stra

_angle

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 75.
Asserting: cantilevenselfjocking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: SELECTIVE IGNORE

Evaluating: cantilevenlead_angle
Relevant rules:

smallest_lead_angle largestjead_angle ckretum_angle
Testing Rule: smallest_leaa_angle FALSE
Testing Rule: largest_lead_angle FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilevenretum_

Relevant rules:
ckselfjocking cknotselfjocking ckretum_ar.gle

Testing Rule: ckselfjocking FALSE
Testing Rule: cknotselfjocking FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilevenselfjocking

Relevant rules:
ckselfjocking cknotselfjocking ckdesign cktensile cksepforce cktensile_stress

cksepforce2
Testing Rule: ckselfjocking FALSE
Testing Rule: cknotselfjocking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE
Evaluating: design:strain

Relevant rules:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

115

ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.108000.
design:strain is set to 0.044223.
design:allowstrain is set to 0.027300.
design:mateforce is set to 62.437463.
design:sepforce is set to -124.921366.
design:tensile_stress is set to -1998.741856.
design:compressive_stress is set to 998.999408.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.098182.
design:strain is set to 0.040204.
design:allowstrain is set to 0.027300.
design:mateforce is set to 56.763125.
design.-sepforce is set to -113.568472.
design:tensile_stress is set to -1817.095552.
design:compressive_stress is set to 908.210000.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.089256.
design:strain is set to 0.036548.
design:allowstrain is set to 0.027300.
design:mateforce is set to 51.601302.
design:sepforce is set to -103.240985.
design:tensile_stress is set to -1651.855760.
design:compressive_stress is set to 825.620832.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.081142.
design:strain is set to 0.033227.
design:allowstrain is set to 0.027300.
design:mateforce is set to 46.912454.
design:sepforce is set to -93.859800.
design:tensile_stress is set to -1501.756800.
design:compressive_stress is set to 750.599264.

Evaluating: cantilevenundercut
Relevant rules:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

116

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.073765.
design:strain is set to 0.030207.
design:allowstrain is set to 0.027300.
design:mateforce is set to 42.648585.
design:sepforce is set to -85.328893.
design:tensile_stress is set to -1365.262288.
design:compressive_stress is set to 682.377360.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.067059.
design:strain is set to 0.027457.
design:allowstrain is set to 0.027300.
design:mateforce is set to 38.765922.
design:sepforce is set to -77.560678.
design:tensile_stress is set to -1240.970848.
design:compressive_stress is set to 620.254752.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.060963.
design:strain is set to 0.024961.
design:allowstrain is set to 0.027300.
design:mateforce is set to 35.241877.
design:sepforce is set to -70.509966.
design:tensile_stress is set to -1128.159456.
design:compressive_stress is set to 563.870032.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign TRUE
designxriteria is set to good.

Done torwardChaining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TRACE: CHECK RETURN ANGLE

'^ckstra ia— cantilov

•d«c»gn:r.

’dostgn:f**'

Asserting: cantilevenlead_angle as 35.
Asserting: cantilever:retum_angle as 50.
Asserting: cantilevenselfJocking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE

Evaluating: cantilevenlead_angle
Relevant rules:

smallest_lead_angle largestJead_anjgle ckretum_angle
Testing Rule: smallestJeaa_angle FALSE
Testing Rule: largestjead_angle FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilevenretum_angle

Relevant rules:
ckselfjocking cknotselfJocking ckretum_angle

Testing Rule: ckselfjocking TRUE
cantilever:retum_angle is set to 61.189194.
Deactivating Rule: ckselfjocking.
Deactivating Rule: cknotself Jocking.

Evaluating: cantilever:selfJocking
Relevant rules:

ckdesign cktensile cksepforce cktensile_stress cksepforce2
Testing Rule: ckretum_angle FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.108000.
design:strain is set to 0.044223.

. ckdBsjg
'Cksfram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

design:allowstrain is set to 0.027300.
design:mateforce is set to 62.437463.
design:sepforce is set to 24241016.666667.
design:tensile_stress is set to 387856266.666672.
design:compressive_stress is set to 998.999408.

Evaluating: cantilevernetum_angle
Relevant rules:

ckretum_angle
Testing Rule: ckreturn_angle FALSE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.742500.
design:strain is set to 0.036548.
design:allowstrain is set to 0.027300.
design:mateforce is set to 46.910274.
design:sepforce is set to 18212667.333333.
design:tensile_stress is set to 291402677.333328.
design:compressive_stress is set to 750.564384.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: cantilevenlength

Relevant rules:
cklength

Testing Rule: cklength FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.098182.
design:strain is set to 0.033227.
design:allowstrain is set to 0.027300.
design:mateforce is set to 42.647684.
design:sepforce is set to 16557739.333333.
design:tensile_stress is set to 264923829.333328.
design:compressive_stress is set to 682.362944.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.816750.
design:strain is set to 0.027460.
design:allowstrain is set to 0.027300.
design:mateforce is set to 32.041453.
design:sepforce is set to 12439925.666667.
design:tensile_stress is set to 199038810.666672.
design:compressive_stress is set to 512.663248.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength TRUE

cantilevenlength is set to .75.
design:strain is set to 0.032565.
design:allowstrain is set to 0.027300.
design:mateforce is set to 41.380015.
design :sepforce is set to 16065573.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

119

design:tensile_stress is set to 257049168.
design:compressive__stress is set to 662.080240.
Deactivating Rule: cktensile_stiess.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckraateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.089256.
design:strain is set to 0.029604.
design:allowstrain is set to 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to 14604797.
design:tensile_stress is set to 233676752.
design:compressive_stress is set to 601.880016.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.081142.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
design:mateforce is set to 34.199344.
design:sepforce is set to 13277715.666667.
design:tensile_stress is set to 212443450.666672.
design:compressive_stress is set to 547.189504.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign TRUE
designxriteria is set to good.

Done forwardChaining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TRACE: NOT SELF-LOCKING

?

'•c k a o tsa
: c± do* t$

c k ts a s d

i lo v *

: c * d e sig

.. c k d e s ig
cfcstm k*

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 50.
Asserting: cantilever:self_lockmg as no.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE

Evaluating: cantilevenlead_angle
Relevant rules:

smallest_lead_angle largest_lead_angle ckretum_angle
Testing Rule: sma!lest_lead_ande FALSE
Testing Rule: largest_lead_angie FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilevennetum_angle

ckself_locking cknotselfjocking ckretum_angle
Testing Rule: ckselfjocking FALSE
Testing Rule: cknotself_locking FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilever:self_locking

Relevant rules:
ckselfjocking cknotself_locking ckdesign cktensile cksepforce cktensile_stress

ckseDforce2
Testing Rule: ckself_locking FALSE
Testing Rule: cknotselfjocking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.108000.
design:strain is set to 0.044223.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

121

designrallowstrain is set to 0.027300.
designrmateforce is set to 62.437463.
designrsepforce is set to 155.242146.
design:tehsile_stress is set to 2483.874336.
design:compressive_stress is set to 998.999408.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.742500.
design:strain is set to 0.036548.
design:allowstrain is set to 0.027300.
design:mateforce is set to 46.910274.
design:sepforce is set to 116.635931.
design:tensile_stress is set to 1866.174896.
design:compressive_stress is set to 750.564384.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.098182.
design:strain is set to 0.033227.
design:allowstrain is set to 0.027300.
design:mateforce is set to 42.647684.
design:sepforce is set to 106.037590.
design:tensile_stress is set to 1696.601440.
design:compressive_stress is set to 682.362944.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.816750.
design:strain is set to 0.027460.
design:allowstrain is set to 0.027300.
design:mateforce is set to 32.041453.
design:sepforce is set to 79.666656.
design:tensile_stress is set to 1274.666496.
design:compressive_stress is set to 512.663248.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength TRUE

cantilevenlength is set to .75.
design:strain is set to 0.032565.
design:allowstrain is set to 0.027300.
design:mateforce is set to 41.380015.
design:sepforce is set to 102.885701.
design:tensile_stress is set to 1646.171216.
design:compressive_stress is set to 662.080240.
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckmateforce.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.089256.
design:strain is set to 0.029604.
design:allowstrain is set to 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to 93.530731.
design:tensile_stress is set to 1496.491696.
design:compressive_stress is set to 601.880016.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.081142.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
desigmmateforce is set to 34.199344.
design:sepforce is set to 85.031956.
design:tensile_stress is set to 1360.511296.
design:compressive_stress is set to 547.189504.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign TRUE
design:criteria is set to good.

Done forwardChaining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

123

TRACE: CHECK LEAD ANGLE

losign.'

'docign:

b l e v - o b f a a yI e » - o U w y

ic k d c s t.

; d u J o S tm

le%

Asserting: cantilever:lead_angle as 50.
Asserting: cantilever:retum_angle as 50.
Asserting: cantilevenselfjocking as no.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE

Evaluating: cantilevenlead_angle
Relevant rules:

smallest_lead_angle largestJead_angle ckretum_angle
Testing Rule: smallestjead_angle FAL§E
Testing Rule: largest_lead_angle TRUE

cantilever:lead_angle is set to 35.
desigmstrain is set to 0.048645.
design:allowstrain is set to 0.027300.
design:mateforce is set to 68.680781.
design.-sepforce is set to 170.765296.
design:tensile_stress is set to 2732.244736.
design:compressive_stress is set to 1098.892496.

Evaluating: cantiievenretum_angie
Relevant rules:

ckselfjocking cknotself Jocking ckretum_angle
Testing Rule: ckselfjocking FALSE
Testing Rule: cknotself Jocking FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilevenselfjocking

Relevant rules:
ckselfjocking cknotself Jocking ckdesign cktensile cksepforce cktensile_stress

cksepforce2
Testing Rule: ckselfjocking FALSE
Testing Rule: cknotself Jocking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Evaluating: cantilevenlead_angle
Relevant rules:

smallest_lead_angle largest_lead_angle ckretum_angle
Testing Rule: smallest_lead_angle FALSE
Testing Rule: largest_lead_angle FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.108000.
design:strain is set to 0.044223.
design:allowstrain is set to 0.027300.
design:mateforce is set to 62.437463.
design:sepforce is set to 155.242146.
design:tensile_stress is set to 2483.874336.
design:compressive_stress is set to 998.999408.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.742500.
desigmstrain is set to 0.036548.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 46.910274.
desigmsepforce is set to 116.635931.
design:tensile_stress is set to 1866.174896.
design:compressive_stress is set to 750.564384.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: desigmstrain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.098182.
desigmstrain is set to 0.033227.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 42.647684.
desigmsepforce is set to 106.037590.
design:tensile_stress is set to 1696.601440.
design:compressive_stress is set to 682.362944.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.816750.
desigmstrain is set to 0.027460.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 32.041453.
desigmsepforce is set to 79.666656.
design:tensile_stress is set to 1274.666496.
design:compressive_stress is set to 512.663248.

Evaluating: cantilevenlength

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

125

Relevant rules:
cklength

Testing Rule: cklength TRUE
cantilevenlength is set to .75.
desigmstrain is set to 0.032565.
design:allowstrain is set to 0.027300.
desigmmateforce is set to 41.380015.
desigmsepforce is set to 102.885701.
design:tensile_stress is set to 1646.171216.
design:compressive_stress is set to 662.080240.
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckmateiorce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.089256.
design:strain is set to 0.029604.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 37.617501.
desigmsepforce is set to 93.530731.
design:tensile_stress is set to 1496.491696.
design:compressive_stress is set to 601.880016.

Evaluating: cantilevenundercut
Relevant rules:

NONE
l_l V U lU U U l l ^ .

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.081142.
desigmstrain is set to 0.026914.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 34.199344.
desigmsepforce is set to 85.031956.
design:tensile_stress is set to 1360.511296.
design:compressive_stress is set to 547.189504.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: desigmstrain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign TRUE
desigmcriteria is set to good.

Done torwardChaining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

126

TRACE: MAXIMUM MATEFORCE
•smatfe
•atrtsAtr

W(c k se lLc&ntito*. ,
• ckM O tS,

•e k d a s f^

C&T&p!

/lafwot

'C&sapt
> ckd a sfm

ic tafrae—cantAe*
farf& Q fi— c± I*»g

.d d e s f ,
ic& stra t—cantito*

design?.

^ d e s i g

d d o ttg
•c k t/o a *

c k s tfo tr - can ti I b>*— c k fe n g
'd e s ig n

''design.'

jibSei
, , .> c k d s s t

design:
lesign:

datrtJr*** 9*
•sm a B a

ycentilew*—
design:—ofc/we*('c & s tv s

\ . d u fa s t
'design .'. .

* ckstrm .

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 75.
Asserting: cantilevenselfjocking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE

Evaluating: cantilever.lead_angle
Relevant rules:

smallest_lead_angle largestJead_angle ckretum_angle
Testing Rule: smallest_leaa_angle FALSE
Testing Rule: largestJead_angle FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilevenretum_angle

Relevant rules:
ckselfjocking cknotself Jocking ckretum__angle

Testing Rule: ckselfjocking FALSE
Testing Rule: cknotself Jocking FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilevenselfjocking

Relevant rules:
ckselfjocking cknotself Jocking ckdesign cktensile cksepforce cktensile_stress

cksepforce2
Testing Rule: ckselfjocking FALSE
Testing Rule: cknotself Jocking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

127

Evaluating: design:strain
Relevant rules:

ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.108000.
design:strain is set to 0.044223.
design:allowstrain is set to 0.027300.
desigmmateforce is set to 62.437463.
design:sepforce is set to -124.921366.
design:tensile_stress is set to -1998.741856.
design:compressive_stress is set to 998.999408.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.742500.
design:strain is set to 0.036548.
design:allowstrain is set to 0.027300.
desigmmateforce is set to 46.910274.
design:sepforce is set to -93.855440.
design:tensile_stress is set to -1501.687040.
design:compressive_stress is set to 750.564384.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.098182.
design:strain is set to 0.033227.
desigmallowstrain is set to 0.027300.
design:mateforce is set to 42.647684.
design:sepforce is set to -85.327090.
design:tensile_stress is set to -1365.233440.
design:compressive_stress is set to 682.362944.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.816750.
design:strain is set to 0.027460.
design:allowstrain is set to 0.027300.
desigmmateforce is set to 32.041453.
desigmsepforce is set to -64.106737.
design:tensile_stress is set to -1025.707792.
design:compressive_stress is set to 512.663248.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength TRUE

cantilevenlength is set to .75.
desigmstrain is set to 0.032565.
desigmallowstrain is set to 0.027300.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

128

design:mateforce is set to 41.380015.
design:sepforce is set to -82.790807.
design:tensile_stress is set to -1324.652912.
design:compressive_stress is set to 662.080240.
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.089256.
design:strain is set to 0.029604.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 37.617501.
desigmsepforce is set to -75.262982.
design:tensile_stress is set to -1204.207712.
design:compressive_stress is set to 601.880016.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: desigmstrain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.081142.
desigmstrain is set to 0 02.6914-.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 34.199344.
desigmsepforce is set to -68.424126.
design:tensile_stress is set to -1094.786016.
design:compressive_stress is set to 547.189504.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: desigmstrain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain FALSE
Evaluating: desigmallowstrain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain FALSE
Evaluating: desigmmateforce

Relevant rules:
ckdesign ckmateforce2

Testing Rule: ckdesign FALSE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Testing Rule: ckmateforce2 TRUE
cantilevenlead_ang3e is set to 31.818182.
design:strain is set to 0.026914.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 29.886331.
desigmsepforce is set to -68.424126.
desigmtensile_stress is set to -1094.786016.
design:compressive_stress is set to 478.181296.

Evaluating: cantilever.lead_angle
Relevant rules:

smallest_lead_angle Iargest_Iead_angle ckretum_angle
Testing Rule: smallest_lead_angle FALSE
Testing Rule: largest_lead_angle FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

festing Rule: ckdesign TRUE
desigmcriteria is set to good.

Done torwardChaining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TRACE: MAXIMUM MATEFORCE / NOT SELF-LOCKING

130

can tile*

cantuev.

•CXSf*St
m cxsirat.—cantata*

cantiJ t tr - c x fa ttg

d̂esign

•daX+r-ck/oag
■ c k tfm

c&strotr-mti*+"Ckfsog ‘'design

.. c x tfe s j

" s i g n :

design:design

ycantaleK-Zaryiesi
l9 iig n > » o fjM ^ 'o b w k r\ - ekdm

'design:*.
* cks& ot.

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 50.
Asserting: cantilevenselfjocking as no.
Asserting: desigmstrain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE

U t r o l n o f m a * p n n h ’1 » t r A r * 1 o o H p n f t l p
JuV U lU U LU i£i< v a i i u i w t v u i v f a w

Relevant rules:
smallest_lead_angle largestJead_angle ckretum_angle

Testing Rule: smaliest_leaa_angle FALSE
Testing Rule: largestJead_angle FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilever.ietum_angle

Relevant rules:
ckselfjocking cknotself Jocking ckretum_angle

Testing Rule: ckselfjocking FALSE
Testing Rule: cknotself Jocking FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: cantilevenselfjocking

Relevant rules:
ckselfjocking cknotself Jocking ckdesign cktensile cksepforce cktensile_stress

r*1c,Qf*r>fnrfk<a9
Testing Rule: ckselfjocking FALSE
Testing Rule: cknotself Jocking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

131

Evaluating: design:strain
Relevant rules:

ckdesign ckstrain ckstrain2
testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.108000.
design:strain is set to 0.044223.
design:allovvstrain is set to 0.027300.
desigmmateforce is set to 62.437463.
desigmsepforce is set to 155.242146.
design:tensile_stress is set to 2483.874336.
design:compressive_stress is set to 998.999408.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.742500.
desigmstrain is set to 0.036548.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 46.910274.
desigmsepforce is set to 116.635931.
design:tensile_stress is set to 1866.174896.
design:compressive_stress is set to 750.564384.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: desigmstrain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.098182.
desigmstrain is set to 0.033227.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 42.647684.
desigmsepforce is set to 106.037590.
design:tensile_stress is set to 1696.601440.
design:compressive_stress is set to 682.362944.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Testing Rule: ckstrain2 TRUE

cantilevenlength is set to 0.816750.
desigmstrain is set to 0.027460.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 32.041453.
desigmsepforce is set to 79.666656.
design:tensile_stress is set to 1274.666496.
design:compressive_stress is set to 512.663248.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength TRUE

cantilevenlength is set to .75.
desigmstrain is set to 0.032565.
desigmallowstrain is set to 0.027300.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

132

desigmmateforce is set to 41.380015.
desigmsepforce is set to 102.885701.
design:tensile_stress is set to 1646.171216.
design:compressive_stress is set to 662.080240.
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength FALSE
Evaluating: desigmstrain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.089256.
desigmstrain is set to 0.029604.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 37.617501.
desigmsepforce is set to 93.530731.
design:tensile_stress is set to 1496.491696.
design:compressive_stress is set to 601.880016.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: desigmstrain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.081142.
design:strain is set to 0.026914-.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 34.199344.
desigmsepforce is set to 85.031956.
design :tensile_stress is set to 1360.511296.
design:compressive_stress is set to 547.189504.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: desigmstrain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
| Testing Rule: ckstrain FALSE
| Evaluating: desigmallowstrain
I Relevant rules:
\ ckdesign ckstrain
\ Testing Rule: ckdesign FALSE
I Testing Rule: ckstrain FALSE
| Evaluating: desigmmateforce
5 Relevant rules:
$ ckdesign ckmateforce2
a Testing Rule: ckdesign FALSE
6
aaa
a
i
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Testing Rule: ckmateforce2 TRUE
cantilever:lead_angle is set to 31.818182.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
designrmateforce is set to 29.886331.
desigmsepforce is set to 85.031956.
design:tensile_stress is set to 1360.511296.
design:compressive_stress is set to 478.181296.

Evaluating: cantilevenlead_angle
Relevant rules:

smallest_lead_angle largest_lead_angle ckretum_angle
Testing Rule: smallest_lead_angle FALSE
Testing Rule: largest_lead_angle FALSE
Testing Rule: ckretum_angle FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign TRUE
design:criteria is set to good.

Done lorwardChaining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TRACE: MAXIMUM SEPARATING FORCE

134

ckdast'
dttcms.
c k sc p i—caalilcv • • c Z /co g
dtim M s.

•dtsaî

'design:

3 ckdea

'design?.

.c k d o t t '

c k s tn

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:retum_angle as 50.
Asserting: cantilevenselfjocking as no.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE

Evaluating: cantilevenlead_angle
Relevant rules:

smallestJead_angle largestJead_angle ckretum_angle
Testing Rule: smallestJeaa_angle FALSE
Testing Rule: largestjead_angle FALSE
Testing Rule: ckretum 2ngle JrvAESE
Evaluating: cantilevenretum_angle

Relevant rules:
ckselfjocking cknotself Jocking ckretum_angle

Testing Rule: ckselfjocking FALSE
Testing Rule: cknotself Jocking FALSE
Testing Rule: ckretum_angle nALSE
Evaluating: cantilevenselfjocking

Relevant rules:
ckselfjocking cknotself Jocking ckdesign cktensile cksepforce cktensile_stress

cksepforce2
Testing Rule: ckselfjocking FALSE
Testing Rule: cknotself Jocking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce TRUE

cantilevenlength is set to 0.742500.
desigmstrain is set to 0.040203.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 51.601557.
desigmsepforce is set to 128.300157.
design:tensile_stress is set to 2052.802512.
design:compressive_stress is set to 825.624912.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

135

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 TRUE

cantilever:retum_angle is set to 45.454545.
design:strain is set to 0.040203.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 51.601557.
desigmsepforce is set to 90.079478.
design:tensile_stress is set to 1441.271648.
design:compressive_stress is set to 825.624912.

Evaluating: cantilevenretum_angle
Relevant rules:

ckselfjocking cknotself Jocking ckretum_angle
Testing Rule: ckselfjocking FALSE
Testing Rule: cknotself Jocking FALSE
Testing Rule: ckretum_angle FALSE
Testing Rule: cklength FALSE
Evaluating: desigmstrain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.108000.
desigmstrain is set to 0.036548.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 46.910274.
desigmsepforce is set to 81.890028.
design:tensile_stress is set to 1310.240448.
design:compressive_stress is set to 750.564384.

Evaluating: cantilevenundercut
Relevant rules:

NONE
TaM?n<7 P n lo * r»Vctr*0iT"»0 TDTTP
lW U ll^ XVUlV/a VAOuUlllM A A.VO

cantilevenlength is set to 0.816750.
desigmstrain is set to 0.030205.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 35.244432.
design:sepforce is set to 61.525276.
design:tensile__stress is set to 984.404416.
design:compressive_stress is set to 563.910912.

Evaluating: cantilevenlength
Relevant rules:

cklength
Testing Rule: cklength TRUE

cantilevenlength is set to .75.
desigmstrain is set to 0.035820.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 45.516109.
desigmsepforce is set to 79.456270.
design:tensile_stress is set to 1271.300320.
design:compressive_stress is set to 728.257744.
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

136

Deactivating Rule: ckstrain2.
Evaluating: cantilevenlength

Relevant rules:
cklength

Testing Rule: cklength FALSE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.098182.
design:strain is set to 0.032565.
design:allowstrain is set to 0.027300.
desigmmateforce is set to 41.380015.
desigmsepforce is set to 72.236000.
design:tensile_stress is set to 1155.776000.
design:compressive_stress is set to 662.080240.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: desigmstrain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.089256.
desigmstrain is set to 0.029604.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 37.617501.
desigmsepforce is set to 65.667879.
design:tensile_stress is set to 1050.686064.

_ design:compressive_stress is set to 601.880016.
Evaluating: cantilevenundercut

Relevant rules:
NONE

Evaluating: desigmstrain
Relevant rules:

ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilevenundercut is set to 0.081142.
desigmstrain is set to 0.026914.
desigmallowstrain is set to 0.027300.
desigmmateforce is set to 34.199344.
desigmsepforce is set to 59.700893.
design:tensile_stress is set to 955.214288.
desigmcompressive_stress is set to 547.189504.

Evaluating: cantilevenundercut
Relevant rules:

NONE
Evaluating: desigmstrain

Relevant rules:
ckdesign ckstrain

Testing Rule: ckdesign TRUE
desigmcriteria is set to good.

Done torwardChaining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX C

EDIT PROGRAM

DECLARE SUB STRMOD (NSTRGS)
OPEN "G:\KAPPA\SNAP\DATABAS\REPORT.TXT" FOR INPUT AS #1
OPEN "G:\KAPPA\SNAP\DATABAS\MATERIAL.TXT" FOR OUTPUT AS #2
FOR 1 = 1 TO 7

INPUT #1, LINES
NEXT I

DO WEDDLE NOT EOF(l)
INPUT #1, LINES
NAME1S = RTRIM$(MID$(LINE$, 1,16))
NAME2S = RTRIM$(MID$ (LINES, 17, 16))
NTYPES = RTRIM$(MID$(LINE$, 33, 51))
NMOD = VAL(MID$ (LINES, 84,11))
ELCNG = VAL(MID$(LINE$, 95,11))
TSTRESS = VAL(MID$(LINE$, 106,11))
CSTRESS = VAL(MID$(LINE$, 117,11))
CALL STRMOD(NAMEl$)
CALL STRMOD(NAME2S)
NAMES = NAME1S + NAME2S
IF NTYPES = "Polypropylene" THEN

MUPP = .4
I MUPM = .25
I ELSEIF NTYPES = "Polystyrene" THEN
| MUPP = .5
i MUPM = .4

ELSEIF NTYPES = "Styrene Acrylonitrile" THEN
I MUPP = .55

MUPM = .45
ELSEIr N i YPES = "Polycarbonate" i HEN

MUPP = .55
MUPM = .45

ELSEIF NTYPES = "Acrylonitrile Butadiene Styrene" THEN
| MUPP = .75
■ MUPM = .65

ELSEIF NTYPES = "Polyvinyl Chloride" THEN
MUPP = .6
MUPM = .55

ELSEIF NTYPES = "Acrylonitrile Butadiene Styrene + PC Alloy" THEN
MUPP = .65
MUPM = .55

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ELSE
MUPP = 0
MUPM = 0

END IF
WRITE #2, NAMES, NTYPES, NMOD, ELONG, MUPP, MUPM, TSTRESS,

CSTRESS
LOOP
CLOSE # i
CLOSE #2
END

SUB STRMOD (NSTRGS)

FOR NCHAR = I TO LEN(NSTRG$)
CHS = MID$(NSTRG$, NCHAR, 1)
IF INSTRC -0/:", CHS) THEN

MID$(NSTRG$, NCHAR, 1) =
END IF

NEXT NCHAR

END SUB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A P P E N D IX D

IDEAS SNAP FEATURE

Parameter Name/Number: 1 - LENGTH
Type of Parameter : Prompted
Type of Limit : Min and Max
Type of Units : Length
Prompt: Enter length of snap
Default Value: 10.000
Minimum Value: 0.0010000 Maximum Value: 1.0000E+13
The parameter controls the following entities:

Leaf 1, Extrusion Linear_Dimension_l

Parameter Name/Number: 2 - WIDTH
Type of Parameter : Prompted
Type of Limit : None
Type of Units : Length
Prompt: Enter width o f snap
Default Value: -4.0000
The parameter controls the following entities:

Leaf 1, Extrusion Distance in Z

Parameter Name/Number: 3 - THICKNESS
Type of Parameter : Prompted
Type of Limit : Min and Max
Type of Units : Length
Prompt: Enter height of snap
Default Value: 5.0000
Minimum Value: 0.0010000 Maximum Value: 1.0000E+13
The parameter controls the following entities:

Leaf 1, Extrusion Linear_Dimension_3

Parameter Name/Number: 4 - UNDERCUT
Type of Parameter : Prompted
Type of Limit : Min and Max
Type of Units : Length
Prompt: Enter height of undercut
Default Value: 4.0000
Minimum Value: 0.0010000 Maximum Value: 1.0000E+13
The parameter controls the following entities:

Leaf 1, Extrusion Linear_Dimension_4

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

 ̂
ps

isi
siw

aa
sia

af
lu

ffi
fi

sia
sa

laa

sE
Hi

aa
i

Parameter Name/Number: 5 - LEAD ANGLE
Type of Parameter : Prompted
Type of Limit : None
Type of Units : Length
Prompt; Enter lead angle
Default Value: 45.000
The parameter is referenced by the following parameters:

7 - LEADROT

Parameter Name/Number. 6 - RETANGLE
Type of Parameter : Prompted
Type o f Limit : None
Type of Units : Length
Prompt: Enter return angle
Default Value: 45.000
The parameter is referenced by the following parameters:

8 - RETROT

Parameter Name/Number: 7 - LEADROT
Type of Parameter : Equational
Type of Limit : Min and Max
Type of Units : None
Equation: 90+LEADANGLE
Last evaluated value: 135.00

Minimum Value: 1.0000E-06 Maximum Value: 180.00
The parameter controls the following entities:

Leaf 1, Extrusion Angular_Dimension_12

Parameter Name/Number: 8 - RETROT
Type of Parameter : Equational

| Type of Limit : Min and Max
i Tvne of Units : None
I Equation: 180-RETANGLE
i Last evaluated value: 135.00
j Minimum Value: 1.0000E-06 Maximum Value: 180.00
j The parameter controls the following entities:
5 Leaf 1, Extrusion Angular_Dimension_15

t!
i

1
3
3
8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX E

USER EVALUATION FORM

NAME __

1. Does the expert system prototype match known design solutions? Give examples.

2. Discuss the data input Is it self-explanatory? Is the format easy to use?
Do you have any suggestions for changes to the data input?

3. Does the prototype provide enough flexibility in altering the configuration geometry?
Should any other variables be modifiable?

4. Are the appropriate design constraints (strain and maximum mating and separating
forces Considered in the prototype? Would you add any additional constraints?

5. Discuss the output? Is it descriptive? Is the format appropriate?

6. Was the level of instruction adequate?

7. For a non-programmer, do you think the system would be easy to use?

For the extended evaluator
8. Discuss the ease of adding knowledge to the prototype. How easy is it to add new
materials or rules to the system? How easy is it to modify the user interface?

9. Compare the expert system software development tools to other packages that you are
familiar with.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFERENCES

H. Adeli, ed., Expert Systems in Construction and Structural Engineering, New York, NY:
Chapman & Hall, 1988.

H. Adeli and Y. S. Chen, “Structuring Knowledge and Data Bases in Expert Systems for
Integrated Structural Design,” Microcomputers in Civil Engineering, vol. 4, no. 3, Sept.
1989, 175 - 199.

Hojjat Adeli, Knowledge Engineering, 2 vols, New York: McGraw-Hill, 1990.

R. E. Adler and K. Ishii, “DAISIE: Designer’s Aid for Simultaneous Engineering,”
ASME Computers in Engineering Conference, vol. 1, 1989, 19 - 26.

Janice Aikins, John Kunz, and Edward H. Shortliffe, “PUFF: An Expert System for
Interpretation o f Pulmonary Function Data,” Computers and Biomedical Research, vol. 16,
1983, 199 - 208.

R. H. Allen, “Design Guidelines for Expert Systems,” Proceedings of Conference on AI,
Springer-Verlag / Computational Mechanics Publications, 1986,651 - 658.

R.H. Allen, M. G. Boamet, C. J. Culbert, and R. T. Savely, “Using Hybrid Expert
System Approaches for Engineering Applications,” Engineering with Computers, vol. 2,
1987, 95-110.

Morris Asimow, Introduction to Design , Englewood Cliffs, NJ: Prentice Hall, 1962.

S. D. Bacon and D. C. Brown, “Reasoning about Mechanical Devices: A Top-Down
Approach to Deriving Behavior from Structure, ”ASME Computers in Engineering
Conference, vol. 1, 1988, 467 - 472.

David Barnett, Charles Jackson, and James A. Wentworth, “Developing Expert Systems,”
U. S. Department of Transportation Technical Report, 1988.

Avron Barr, Paul Cohen, and Edward Feigenbaum, The Handbook c f Artificial
Intelligence, Stanford, CA: HeurisTech Press, 1982.

V. Baya, N. A. Langrana, and Y. Jularia, “Design o f a Die in an Extrusion Manufacturing
Process,” ASME Computers in Engineering Conference, vol. 1, 1989, 141 - 149.

Glen L. Beall, “Plastic Part Design for Economical Injection Molding,” Society of the
Plastics Industry Seminar Notes, 1990.

Claude Bedard and Kris’nnan Gowri, “Automating Building Design Process with KBES,”
Computing in Civil Engineering, vol. 4, no. 2, April 1990, 69 - 83.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

143

James S. Bennett and Robert S. Engelmore, “SACON: A Knowledge-Based Consultant
for Structural Analysis”, IJCAI, 1979, 47 - 49.

P. P. Bonissone and R. M. Tong, “Editorial: Reasoning with Uncertainty in Expert
Systems”, International Journal ofMan-Machine Studies, vol. 22, no. 3, 1985, 241 - 250.

Borg-Wamer Chemicals. Plastics Design Manual Parkersburg, WV, 1986 - 1988.

Borg-Wamer Chemicals. Techniques. Parkersburg, WV, 1986 - 1988.

Ronald J. Brachman, “On the Epistemolcgical Status of Semantic Networks,” N. Findler,
Ed., Associative Networks: Representation and Use o f Knowledge by Computers, New
York: Academic Press, 1979.

M.A. Bramer, “A Survey and Critical Review of Expert Systems Research,” Introductory
Readings in Expert Systems, Donald Mitcnie, ed., 1982,3 - 29.

M.A. Bramer, “Expert Systems: the Vision and the Reality,” Fourth Technical Conference
o f British Computer Society Specialist Group on Expert Systems / Research and
Development in Expert Systems, M.A. Bramer ed., 1984, 1 - 12.

Alan Brody, “The Experts,” Infoworld, June 19,1989, 59 - 75.

D. C. Brown and B. Chandrasekaran, “An Approach to Expert Systems for Mechanical
Design '' Proceedings Trends and Applications, 1983, 173 - 180.

D. C. Brown and B. Chandrasekaran, “An Expert System for Mechanical Design: A
Progress Report,” ASME Computers in Engineering Conference, vol. 1, 1984, 343-344.

D. C. Brown and B. Chandrasekaran, “Expert Systems for a Class of Mechanical Design
Activity,” Knowledge Engineering in Computer-Aided Design IFIP Proceedings, 1984,
259 - 277.

David C. Brown and B. Chandrasekaran, “Knowledge and Control for a Mechanical
Design Expert System,” Computer, July 1986, 92 -100.

D.C. Brown, “Capturing Mechanical Design Knowledge,” ASME Computers in
Engineering Conference, vol. 2, 1985, 121 - 129.

David C. Brown, “Failure Handling in a Design Expert System,” Computer Aided Design,
vol. 17, no. 9, Nov. 1985, 436 - 441.

D.C. Brown and W.N. Sloan, “Compilation of Design Knowledge for Routine Design
Expert Svstems: An Initial View,” ASME Computers in Engineering Conference, vol. 1,
1987, 131 - 136.

J.P. Brown, J.H. Clinton, and G.E. Nevill, “Managing Subproblem Interactions in
Preliminary Mechanical Design,” ASME Computers in Engineering Conference, vol. 1,
1989, 2 6 5 -2 7 2 .

Bruce G. Buchanan and Edward A. Feigenbaum, “DENDRAL and Meta-DENDRAL:
Their Applications Dimension,” Artificial Intelligence, vol. 11, August 1978, 5-24.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

144

B. G. Buchanan, et al., “Constructing an Expert System,” Building Expert Systems, F.
Hayes-Roth, D. A. Waterman, and D. B. Lenat, eds., 1983, 127- 168.

Bruce G. Buchanan and Edward H. Shortliffe, Rule Based Expert Systems, Reading, MA:
Addison-Wesley, 1984.

Bruce G. Buchanan, “What Do Expert Systems Offer the Science of AI?” Applications of
Expert Systems, vol. 2, J. Ross Quinlan, ed., 1989,11 - 35.

B. Chandrasekaran, “Towards a Taxonomy of Problem Solving Types,” AI Magazine,
Winter/Spring 1983,9 - 17.

B. Chandrasekaran, “Generic Tasks in Knowledge-Based Reasoning: High-Level
Building Blocks for Expert System Design,” IEEE Expert, Fall 1986, 23 - 30.

F.S. Chehayeb, J. J. Connor, and J. H. Slater, “An Environment for Building Engineering
Knowledge Based Systems,” Applications o f Knowledge Based Systems to Engineering
Analysis and Design /Winter Annual Meeting ASME, 1985, 9 - 28.

J. C. H. Chung, R. L. Cook, D. Patel, and M. K. Simmons, “Feature-Based Geometry
Construction for Geometric Reasoning,” ASME Computers in Engineering Conference,
vol. 1, 1988, 497 - 504.

CIME Staff Report, “AI Pays Off in Flexible Design System,” Mechanical Engineering,
April 1989,68 - 72.

Jonathan S. Colton and John L. Dascanio, II, “An Integrated, Intelligent Design
Environment,” Engineering with Computers, vol. 7, 1991, 11 - 22.

Michael J. Coombs, Developments in Expert Systems, Orlando, FL:Academic Press, 1984.

Robert Cramer, Notes on Snap-Fit Module, 1987.

J. J. Cunningham and J. R. Dixon, “Designing with Features: The Origin of Features,”
ASME Computers in Engineering Conference, vol. 1, 1989, 237 - 243.

Randall Davis and Jonathon King, “An Overview of Production Systems,” Machine
Intelligence, vol. 8, 1977, 300 - 332.

R. Davis, “Where Are We and Where Do We Go from Here?,” AI Magazine, Spring 1982,
3 - 2 2 .

Michelle Dibble, “How to Get the Most from Plastics Technical Centers,” Machine Design,
Sept. 24, 1992, 58 - 64.

J. R. Dixon and M. K. Simmons, “Expert Systems for Engineering Design: Standard V-
Belt Design as an Example of the Design-Evaluate-Redesign Architecture,” ASME
Computers in Engineering Conference, vol. 1, 1984, 332 - 337.

J. R. Dixon, M. K. Simmons, and P. R. Cohen, “An Architecture for Application of
Artificial Intelligence to Design,” ACM / IEEE 21st Design Automation Conference, 1984,
634 - 640.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

145

J. R. Dixon and M. K. Simmons, “Expert Systems for Mechanical Design: A Program of
Research,” ASME Design Automation Conference/Design Engineering Division, 1985,1-9.

J. R. Dixon, A. Howe, P.R. Cohen, and M. K. Simmons, “Dominic I: Progress Towards
Domain Independence in Design by Iterative Redesign,” ASME Computers in Engineering
Conference, vo l.l, 1986, 199-206.

John R. Dixon, “Artificial Intelligence and Design: A Mechanical Engineering View,”
Fifth National Conference on Artificial Intelligence/AAAI Proceedings, 1986, 872-877.

John R. Dixon, Eugen C. Libardi,Jr., Steven C. Luby, Mohan Vaghul, and Melvin K.
Simmons, “Expert Systems for Mechanical Design: Examples of Symbolic
Representations o f Design Geometries,” Engineering with Computers, vol. 2, 1987, 1-10.

J. R. Dixon, M. R. Duffey, R. K. Irani, K. L. Meunier, and M. E Orelup, “A Proposed
Taxonomy of Mechanical Design Problems,” ASME Computers in Engineering
Conference, vol. 1, 1988, 41 - 55.

Richard Duda, John Gaschnig, and Peter Hart, “Model Design in the PROSPECTOR
Consultant System for Mineral Exploration,” Expert Systems in the Micro-electronic Age,
1979, 153 - 167.

Richard Duda and John Gaschnig, “Knowledge-Based Expert Systems Come of Age,”
BYTE, vol. 6, no. 9, Sept. 1981, 238 - 281.

M. R. Duffey and J. R. Dixon, “Automating the Design of Extrusions: A Case Study in
Geometric and Topological Reasoning for Mechanical Design,” ASME Computers in
Engineering Conference, vol. 1, 1988, 505 - 511.

E. I. duPont de Nemours & Co. (Inc.), Polymer Products Department. Engineering
Polymers Design Handbook. Wilmington, DE.

Paul Dvorak, “Keeping Talent with Knowledge Systems,” Machine Design, Aug. 22,
1 9 9 1 ,3 7 -4 2 .

Clive L. Dym, “EXPERT SYSTEMS: New Approaches to Computer-aided Engineering,”
Engineering with Computers, vol. 1, 1985, 9-25.

Clive L. Dym and Raymond E. Levitt, Knowledge-Based Systems in Engineering, New
York, McGraw-Hill, 1991.

[

! Clive L. Dym and Raymond E. Levitt, ‘Toward the Integration of Knowledge for
| Engineering Modeling and Computation,” Engineering with Computers, vol. 7, 1991, 209

-2 2 4 .

Steven L. Elam and L. A. Lopez, Knowledge Based Approach to Checking Designs for
Conformance with Standards, Ph.D. diss., U of Illinois at Urbana-Champaign, 1988.

L. D. Erman, E Hayes-Roth, V. Lesser, and D. Reddy, “The HEARSAY-II Speech-
Understanding System: Integrating Knowledge to Resolve Uncertainty,” Computing
Surveys, vol. 12, no. 2, June 1980, 213 - 253.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

146

A. Esterline, D. Rosen, K. Otto, L. Nelson, T. Hessburg, D.R. Riley, and A.G. Erdman,
“A Methodology for Capturing Mechanical Design Expertise,” ASME Computers in
Engineering Conference, vol. 1, 1988, 47 - 55.

P. Fazio, C. Bedard, and K. Gowri, “Knowledge-Based System Approach to Building
Envelope Design,” Computer-Aided Design, vol. 21, no. 8, October 1989, 519 - 527.

Edward A. Feigenbaum, “The Art of Artificial Intelligence: Themes and Case Studies of
Knowledge Engineering,” 77CA7 5, 1977, 1014- 1029.

Edward A. Feigenbaum, Pamela McCorduck, and H. Penny Nii, The Rise o f the Expert
Company, New York: Times Books, 1988.

E. A. Feigenbaum, “Expert Systems in the 1980s,” Machine Intelligence, (Infotech State of
the Art Report Series 9, No. 3), A. Bond, ed., 1981,219 - 229.

E. A. Feigenbaum and P. McCorduck, The Fifth Generation, Addison-Wesley, 1983.

E. A. Feigenbaum, “Knowledge Processing: From File Servers to Knowledge Servers,”
Applications o f Expert Systems, vol. 2, J. Ross Quinlan ed., 1989, 3 - 10.

S. J. Fenves, “A Framework for Knowledge Based Finite Element Analysis Assistant,”
Applications o f Knowledge Based Systems to Engineering Analysis and Design f Winter
Annual Meeting ASME, 1985, 1-8.

S. J. Fenves, “What is an Expert System?” Expert Systems in Civil Engineering /
Proceedings ASCE, Technical Council on Computer Practices, 1986, 1-6.

S. J. Fenves, U. Flemming, C. Hendrickson, M.L. Maher, and G. Schmitt, “Integrated
Software Environment for Building Design and Construction,” Computer-Aided Design,
vol. 22, no. 1, Jan 1990, 27 - 36.

Gavin A. Finn and Kenneth F. Reinschmidt, “Expert Systems in an Engineering-
Construction Firm,” Expert Systems in Civil Engineering / Proceedings ASCE Technical
Council on Computer Practices, 1986, 40 - 54.

Martin Fischer, “Linking CAD and Expert Systems for Constructability Reasoning,”
Proceedings o f 5th International Conference on Computing in Civil and Building
Engineering, 1993, 1563 - 1570.

Bruce W.R. Forde, Alan D. Russell, and Siegfried F. Stiemer, “Object-Oriented
Knowledge Frameworks,” Engineering with Computers, vol. 5, 1989,79 - 89.

Mark S. Fox, “AI and Expert System Myths, Legends, and Facts,” IEEE Expert, Feb
1990, 8 -20.

J. Gaschnig, “Prospector: An Expert System for Mineral Exploration,” Introductory
Readings in Expert Systems, Donald Mitchie, ed., 1982,47 - 63.

J. Gaschnig, R. Reboh, and J. Reiter, “Development of a Knowledge-Based Expert
System for Water Resources Problems,” SRI Project 1619, SRI International, August,
1981.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

147

Michael R. Genesereth, “The Role of Plans in Automated Consultation,” IJCAI, 1979, 311
-3 1 9 .

J. S. Gero, ed., Applications o f Artificial Intelligence in Engineering V, vol. 1 Design,
(Proceedings of the Fifth International Conference) Boston: Springer-Verlag, 1990.

William B. Gevarter, “An Overview of Expert Systems,” NBSIR 82-2505, May 1982.

William B. Gevarter, “Expert Systems: Limited but Powerful,” IEEE Spectrum, August,
1983,39 - 45.

William B. Gevarter, Intelligent Machines: An Introductory Perspective o f Artificial
Intelligence and Robotics, New Jersey: Prentice Hall, 1985.

William B. Gevarter, “The Nature and Evaluation of Commercial Expert System Building
Tools,” Computer, vol. 20, no. 5, May 1987, 24 - 41.

M. Maher Hakim and J. H. Garrett, “A Description Logic Approach for Representing
Engineering Design Standards,” Engineering with Computers, vol. 9, 1993, 108 - 124.

Paul Harmon and David King, Expert Systems: Artificial Intelligence in Business, New
York, NY: John Wiley & Sons, Inc, 1985.

Anna Hart, “Knowledge Elicitation: Issues and Methods,” Computer Aided Design, vol.
17, no. 9, Nov. 1985, 455 - 462.

Frederick Hayes-Roth, Donald A. Waterman, and Douglas B. Lenat, eds., Building
Expert Systems, Reading, MA: Addison-Wesley Publishing Company, Inc, 1983.

Hoechst Celanese Corp, Engineering Plastics Division. Designing with Plastic. Chatham,
NJ, 1989.

David A. Hoeltzel and Wei-Hua Chieng, “Factors that Affect Planning in a Knowledge-
Based System for Mechanical Engineering Design Optimization with Application to the
Design of Mechanical Power Transmissions,” Engineering with Computers, vol. 5, 1989,
47-62.

David Horn, “Expert Systems Emerge from Their Shells,” Mechanical Engineering, April
1989, 64 - 67.

H. Craig Howard and Daniel R. Rehak, “KADBASE: Interfacing Expert Systems with
Databases, “ IEEE Expert, Fall 1989 ,65-76 .

Guo Huang, Derek Sheldon, and Roger Perks, “Concurrent Engineering by Cooperating
Expert Systems,” ASME Design for Manufacturability, vol. 52, 1993, 51 - 56.

Vladimir Hubka, Principles o f Engineering Design, London, England: Butterworth
Scientific, 1982.

K. E. Hummel, “Coupling Rule-Based and Object-Oriented Programming for the
Classification of Machined Features,” A W E Computers in Engineering Conference, vol.
I, 1989, 409 - 418.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

148

V Daniel Hunt, Artificial Intelligence & Expert Systems Sourcebook, New York, NY:
Chapman & Hall, 1986.

James P. Ignizio, Introduction to Expert Systems, New York: McGraw-Hill, 1991.

Inteilicorp, Inc. Kappa PC Reference Manual 1990.

Intellicorp, Inc. Kappa PC User’s Guide. 1990.

K. Ishii and P. Barkan, “Design Compatibility Analysis — A Framework for Expert
Systems in Mechanical Sysytem Design,” ASME Computers in Engineering Conference,
vol. 1, 1987, 95 - 102.

K. Ishii, L. Homberger, and M. Liou, “Compatibility-Based Design for Injection
Molding,” Concurrent Product and Process Design /Winter Annual Meeting ASME, 1989,
153 - 160.

R. K. Irani, B. H. Kim, and J. R. Dixon, “Integrating CAE, Features, and Iterative
Redesign to Automate the Design of Injection Molds,” ASME Computers in Engineering
Conference, vol. 1, 1989, 27 - 33.

Peter Jackson, Introduction to Expert Systems, Workingham, England: Addison-Wesley
Publishing Co., 1986.

Taesik Jeong, Thomas Kicher, and Ronald Zab, “A Mechanical Design Framework Based
on Object-Oriented Approach,” ASME Computers in Engineering Conference, 1993, 315 -
324.

Seiji Kameoka, Nobuhiro Haramoto, and Tadamoto Sakai, “Development of an Expert
System for Injection Molding Operations,” Advances in Polymer Technology, vol. 12, no.
4, 1993, 403 - 418.

Taha Khedro, M. Genersereth, and P. Teicholz, “Agent-Based Framework for Integrated
Facility Engineering,” Engineering with Computers, vol. 9, 1993, 94 - 107.

5.B. Kim and N.P. Suh, “Expert Design System for Injection Molding,” KBES for
Manufacturing /W inter Annual Meeting ASME, 1986, 311 - 325.

F. Kinoglu, D. Riley, and M. Donath, “Knowledge-Based System Model of the Design
Process,” ASME Computers in Engineering Conference, vol. 1, 1986, 181 - 191.

Michael L. Kmetz, CAD/CAE of Piece Parts for a Specific Manufacturing Process, Ph.D.
diss., University of Wyoming, 1986.

A. S. Kott and J. H. May, “Decomposition vs. Transformation: Case Studies of Two
Models o f the Design Process,” ASME Computers in Engineering Conference, vo l.l,
1989,1 - 8.

VM. Kulkami, J.R. Dixon, J.E. Sunderland, and M.K. Simmons, “Expert Systems for
Design: The Design of Heat Fins as an Example of Conflicting Subgoals and the Use of
Dependencies,” ASME Computers in Engineering Conference, vol. 2, 1985, 145 - 150.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

149

A. Senthil kumar, A.Y.C. Nee, and S. Prorabanpong, “Expert Fixture-Design System for
an Automated Manufacturing Environment,” Computer-Aided Design, vol. 24, no. 6, June
1992, 316 - 326.

T. H. Kwon and P. A. Weeks, “Expert System Aid for Intelligent Molding Cooling System
Design,” ASME Computers in Engineering Conference, vol.l, 1988, 281 -286.

Alice LaPlante, “Bring in the Expert,” Infoworld, Oct. 1, 1990, 55 - 64.

Jean-Claude Latombe, “Failure Processing in a System for Designing Complex
Assemblies,” IJCAI, 1979, 508 - 515.

H. Lee and T.H. Kwon, “Heuristic Redesign with Numerical Analysis Aids,” ASME
Computers in Engineering Conference, vol. 1, 1989, 131 - 140.

H. H. Lee and J. S. Arora, “Object-Oriented Programming for Engineering Applications,”
Engineering with Computers, vol. 7, 1991, 225 - 235.

K. S. Leung and M. H. Wong, “An Expert-System Shell Using Structured Knowledge,”
Computer, March 1990, 38 - 47.

L. A. Lopez, S. Elam, and K. Reed, “Software Concept for Checking Engineering
Designs for Conformance with Codes and Standards,” Engineering with Computers, vol.
5, 1989, 63 - 79.

S. C-Y. Lu, “Knowledge-Based Expert Systems: A New Horizon of Manufacturing
Automation,” KBESfor Manufacturing / Winter Annual Meeting ASME, 1986, 11-23.

K J. MacCallum and A. Duffy, “An Expert System for Preliminary Numerical Design
Modelling,” A.dvances in Engineering Software, vol. 8, no. 4, 1986, 217 - 222.

J. Mackerle, “A Review of Expert systems Development Tools,” Engineering
Computations, vol. 6, March 1989,2 - 17.

M. L. Maher and S. J. Fenves, “HI-RISE: An Expen System for the Preliminary
Structural Design of High Rise Buildings,” Knowledge Engineering in Computer-Aided
Design /IFIP Proceedings, 1984, 125 - 134.

Mary Lou Maher, “HI-RISE and Beyond: Directions for Expert Systems in Design,”
Computer Aided Design, Nov. 1985, 420-427.

Mary Lou Maher, “Problem Solving Using Expert System Techniques,” Expert Systems
in Civil Engineering / Proceedings ASCE Technical Council on Computer Practices, 1986,
7-17.

Mary Lou Maher, “Expert System Components,” Expert Systems fo r Civil Engineers:
Technology and Application, ASCE, Mary Lou Maher, ed., 1987, 3-14.

M. L Maher, D. Sriram, and S. J. Fenves, ‘Tools and Techniques for Knowledge Based
Expert Systems for Engineering Design,” Advances in Engineering Software, vol. 6, no.
4, 1984, 178 - 188.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

150

Rex Maus and Jessica Keyes, Handbook of Expert Systems in Manufacturing, New York;
McGraw-Hill, 1991.

John McDermott, “Rl: A Rule-based Configurer of Computer Systems,” Artificial
Intelligence, 19, 1982, 39 - 88.

K. L. Meunier and J. R. Dixon, “Iterative Respecification: a Computational Model for
Hierarchical Mechanical System Design,” ASME Computers in Engineering Conference,
vol. 1, 1988, 125 - 32.

Donald Michie, “Expert Systems,” The Computer Journal, vol. 23, no. 4, Nov. 1980, 369
-3 7 6 .

Donald Michie, ed., Introductory Readings in Expert Systems, Gordon and Breach Science
Publishers, 1982.

Miles, Plastic Snap-Fit Joints, Pittsburgh: Miles Inc., Polymers Division, 1992.

Garth Miller and J. S. Colton, “The Complementary Roles of Expert Systems and Database
Management Systems in a Design for Manufacture Environment,” Engineering with
Computers, vol. 8, 1992, 139 - 149.

M. Minsky, “A Framework for Representing Knowledge,” The Psychology o f Computer
Vision, P. Winston, ed., McGraw Hill Book Company, 1975.

Sanjay Mittal and Agustin Araya, “A Knowledge-Based Framework for Design,” National
Conference on Artificial Intelligence AAAI Proceedings, 1986, 856 - 865.

S. Mittal, C. L. Dym, and M. Moijaria, “PRIDE: An Expert System for the Design of
Paper Handling Systems,” Computer, July 1986, 102 - 114.

xvl. Moqana, S. lvJittal, and C.E. Dym, Interactive Graphics in Expert Systems for
Engineering Applications,” ASME Computers in Engineering Conference, vol. 2, 1985,
235 - 239.

J. Mostow, ‘Toward Better Models o f the Design Process,” AI Magazine, vol. 6, no. 1,
Spring 1985, 44 - 57.

A. Newell, “Heuristic Programming: Ill-Structured Problems”, Progress in Operations
Research, Vol. Ill, Aronofsky, ed., 1969, 360 - 414.

Allen Newell and Herbert A. Simon, Human Problem Solving, New Jersey: Prentice Hall,
1972.

E.H. Nielsen, J.R. Dixon, and M.K. Simmons, “GERES: A Knowledge Based Material
Selection Program for Injection Molded Resins,” ASME Computers in Engineering
Conference, 1986, 255 - 261.

E.H. Nielsen, J.R. Dixon, and G.E. Zinsmeister, “Capturing and Using Designer Intent in
a Design-With-Features System,” ASME Design Theory and Methodology Conference,
1991, 95 - 102.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

151

H. Penny Nii, “The Blackboard Model of Problem-Solving,” AI Magazine, Summer 1986,
38 - 53.

H. Penny Nii, “Blackboard Systems at the Architecture Level,” Expert Systems with
Applications, vol. 7, no. 1, Jan-Mar 1994, 43 - 54.

Nils J. Nilsson, Principles o f Artificial Intelligence, Palo Alto, CA: Tioga Publishing Co.,
1980.

Carl E. Noble, “Solving Hi-Structured Management Problems,” Business, Jan-Feb 1979,
26 - 33.

Robert M. O’Keefe, Osman Balci, and Eric P. Smith, “Validating Expert System
Performance,” IEEE Expert, Winter 1987, 81 - 89.

G. Pahl and W. Beitz, Engineering Design, K. Wallace, ed., London, England: The Design
Council, Springer-Verlag, 1984.

Dennis Pearce, “A Statistical/Heuristic Approach to Estimating Model Costs.” ANTEC
1989, 364 - 366.

H. E. Pople, J. D. Myers, and R. A. Miller, “DIALOG: A Model of Diagnostic Logic for
Internal Medicine,” IJCAI, 1975, 848 - 855.

Harry E. Pople, “The Formation of Composite Hypotheses in Diagnostic Problem Solving
/ An Exercise in Synthetic Reasoning,” IJCAI, 1977, 1030 - 1037.

M. Ross Quillian, “Semantic Memory,” Semantic Information Processing, M. Minsky, ed.,
1968, 216 - 270.

J.R. Quinlan, “Fundamentals of the Knowledge Engineering Problem,” Introductory
Readings in Expert Systems, Donald Michie, ed., 1982, 33 - 46.

J. R. Quinlan, “Inductive Knowledge Acquisition: A Case Study,” Applications o f
Expert Systems, vo l.l, J. Ross Quinlan, ed., 1987, 157 - 173.

N. Ramchandran, A. Shah, and N.A. Langrana, “Expert System Approach in Design of
Mechanical Components,” ASME Computers in Engineering Conference, vol. 1,1988, 1-
10.

Martin Ramsey, “Gaining Proficiency in Expert Systems,” Mechanical Engineering, April
1989, 73 - 78.

R. H. Rand, Computer Algetra in Applied Mathematics: An Introduction to MACSYMA.
Research Notes in Mathematics, 94, Boston: Pitman Publishing, 1984.

W. J. Rasdorf, “Perspectives on Knowledge in Engineering Design,” ASME Computers
in Engineering Conference, vol. 2, 1985, 249 - 253.

B. Ravi and M.N. Srinivasan, “Decision Criteria for Computer-Aided Parting Surface
Design,” Computer Aided Design, vol. 22, no. 1, Jan./Fe*b. 1990, 11 - 18.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

152

Daniel R. Rehak and H. Craig Howard, “Interfacing Expert Systems with Design
Databases in Integrated CAD Systems,” Computer Aided Design, Nov. 1985, 443 - 454.

Dave Reiff, “Integral Fastener Design,” Plastics Design Forum, SeptiO ct 1991,59 - 63.

D. Rosen, A. Erdman, and D. Riley, “A General Design Knowledge-Based System Shell,
with Application to Dwell Mechanism Design,” ASME Computers in Engineering
Conference, vol. 1, 1987, 29 - 36.

David Rosen, John R. Dixon, Corrado Poli, and Xin Dong, “Features and Algorithms for
Tooling Cost Evaluation in Injection Moulding and Die Casting,” ASME Computers in
Engineering Conference, vol. 1, 1992, 45 - 52.

Michael Rosenman and John Gero, “Design Codes as Expert Systems,” Computer-Aided
Design, vol. 17, no. 9, Nov 1985, 399 - 409.

M. D. Rychener, “Expert Systems for Engineering Design,” Proceedings Trends and
Applications, 1983, 21 - 27.

G. Rzevski, ed., Applications o f Artificial Intelligence in Engineering V, vol. 2
Manufacturing and Planning, (Proceedings of the Fifth International Conference) Boston:
Springer-Verlag, 1990.

T.S. Sakthivel and V. Kalyanaraman, “A KBES for Integrated Engineering,'’’’Engineering
with Computers, vol. 9, 1993, 1 - 16.

Mukul Saxena and Rohinton Irani, “Knowledge-Based Parametric Modeling for Nozzles,”
ASME Computers in Engineering Conference, 1993, 385 - 395.

Mukul Saxena and Rohinton Irani, “An Integrated NMT-Based CAE Environment -- Part
II: Applications to Automated Gating Plan Synthesis for Injection Molding,” Engineering

• » 1 A 1 AAA AAA AAAwitn computers, voi. 9, ivso , zzu - zju.

Peter M. Schoonmaker, “The Best Laid Plans: Troubleshooting an Expert System,”
Mechanical Engineering, Dec. 1989, 56 - 58.

J. J. Shah, “Development of a Knowledge Base for an Expert System for Design of
Structural Parts,” ASME Computers in Engineering Conference, vol. 2, 1985, 131 - 136.

Aroon Shenoy, “Expert Systems in Plastics Processing,” Materials Engineering, Nov.
1988, 33 - 36.

Edward H. Shortliffe, Computer-Based Medical Consultations: MYCIN, New York:
American Elsevier/North Holland, 1976.

D. Sriram, “Computer-Aided Engineering: The Knowledge Frontier,” Course Notes, MIT,
1988.

D. Sriram, M. L. Maher, S. J. Fenves, “Knowledge-Based Expert Systems in Structural
Design,” Computers and Structures, vol. 20, no. 1-3, 1985, 1-9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

153

D. Sriram et al„ “Knowledge-Based System Applications in Engineering Design:
Research at MIT,” AI Magazine, Fall 1989,79 - 96.

Sally Steadman, “An Integrated Expert System for Engineering Design,” 6th International
Conference on Artificial Intelligence and Expert Systems (In press).

Sally Steadman and Kynric M. Pell, “Expert Systems in Engineering Design: An
Application for Injection Molding of Plastic Parts,” The loum al o f Intelligent
Manufacturing (In press).

Luc Steels, “Components of Expertise,” AI Magazine, Summer 1990,28 - 49.

M. Stefik, J. Aikins, R. Balzer, J. Benoit, L. Bimbaum, F. Hayes-Roth, and E. Sacerdoti,
“The Organization of Expert Systems: A Tutorial,” Artificial Intelligence, 18(2), March
1982, 135 - 173.

Mark Stefik and Danial G. Bobrow, “Object-Oriented Programming: Themes and
Variations,” AI Magazine, Winter 1985, 40 - 62.

J. Stutz and R.L. Kashyap, “Improving Variant Design of Mechanical Systems through
Functional Relationships,” ASME Computers in Engineering Conference, vol. 1, 1989,
151 - 159.

Anthony Stylianou, Gregory Madey, and Robert Smith, “Selection Criteria for Expert
System Shells: A Socio-Technical Framework,” Communications o f the ACM, vol. 35,
no. 10, Oct 1992, 30 - 48.

R.P. Ten Dvke and J. C. Kunz, “Object-oriented Programming,” IBM Systems Journal
vol. 28, no. 3, 1989, 465 - 478.

John V. Thomson, “A Water Penetration Expert System using PROLOG with Graphics,”
Applications o f Expert Systems, vol. 1, J. Ross Quinlan, ed., 1987, 48 - 65.

Deborah L. Thurston, “Concurrent Engineering in an Expert System,” IEEE Transactions
on Engineering Management, vol. 40, no. 2, May 1993, 124 - 135.

David G. Ullman, Tne Mechanical Design Process, New York: McGraw-Kil, Inc., 1992.

David G. Ullman and Thomas A. Dietterich, “Mechanical Design Methodology:
Implications on Future Developments of Computer-Aided Design and Knowledge-Based
Systems,” Engineering with Computers, vol. 2, 1987, 21-29.

J.R. Umaretiya and S.P. Joshi, “An Insight into the Expert-Seisd: A Knowledge Based
System for Structural Design,” Engineering with Computers, vol. 8, 1992, 151 - 161.

M. Vaghul, J. R. Dixon, G.E. Zinsmeister, and M. K. Simmons, “Expert Systems in a
CAD Environment: Injection Molding Part Design as an Example,” ASME Computers in
Engineering Conference, vol. 2, 1985, 77 - 82.

J. van Koppen, “A Survey o f Expert System Development Tools,” Expert Systems in
Engineering, D.T. Pham, ed., Springer-Verlag, 1988, 43 - 57.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

154

R.J. Verrilli, K. L. Meunier, J.R. Dixon, and M.K. Simmons, “Iterative Respecificaiton
Management: A Model for Problem-Solving Networks in Mechanical Design,” ASME
Computers in Engineering Conference, vol. 1, 1987, 103 - 112.

Donald A. Waterman, A Guide to Expert Systems, Reading, MA: Addison-Wesley, 1986.

Shalom M. Weiss and Casimir A. Kulikowski, A Practical Guide to Designing Expert
Systems, Totowa, NJ: Rowman & Allanheld, 1984.

Patrick H. Winston, Artificial Intelligence, Reading, MA: Addison-Wesley, 1984.

Patrick H. Winston, “The Commercial Debut of Artificial Intelligence,” Applications o f
Expert Systems, vo l.l, J. Ross Quinlan, ed., 1987, 3-20.

Nobuyoshi Yabuki and K. Law, “An Object-Logic Model for the Representation and
Processing o f Design Standards,” Engineering with Computers, vol. 9, 1993, 133 - 159.

Jyh-Cheng Yu, Sherveen Lotfi, Kos Isii, and Andrew Trageser, “Process Selection for the
Design of Aluminum Components,” ASME Computers in Engineering Conference, 1993,
181 - 188.

Zhentao Zhang and S. L. Rice, “An Expert System for Conceptual Mechanical Design,”
ASME Computers in Engineering Conference, vol. 1, 1989, 281 - 285.

Zhentao Zhang and Stephen L. Rice, “Conceptual Design: Perceiving the Pattern,”
Mechanical Engineering, July 1989, 58 - 60.

J.R. Zumsteg, D. Pecora, and V.J. Pecora, “A Prototype Expert System for the Design and
Analysis of Composite Material Structures,” ASME Computers in Engineering
Conference, vol. 2, 1985, 137 - 143.

J. R. Zumsteg and D. L. Flaggs, “Knowledge-Based Analysts and Design Systems for
Aerospace Structures,” Applications o f Knowledge Based Systems to Engineering
Analysis and Design /Winter Annual Meeting ASME, 1985, 67-79.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

