INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
flms the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent apon the guality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bieedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a compiete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper lefi-hand corner and
continning from left to right in equal sections with small overlaps. Each
original is aiso photographed in one exposure and is included in

rorinod farm or tho ‘l-\anb f tina lanl-
WALt ANWL AL WS WA W WA Wi WV

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photograpks or illustrations
appearing in this copy for an additionai charge. Contact UMI directly
to order.

UMI

A Beli & Howell Informauon Company
300 North Zeeb Road. Ann Azbor. M1 48106-1346 USA
313:781-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ARSI Ea

"!lllmnmnmnlz

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EXPERT SYSTEMS IN ENGINEERING DESIGN:
APROTOTYPE APPLICATION FOR INJECTION MOLDING OF PLASTIC PARTS

by
Sally Jean Steadman

A dissertation submitted to the
Department of Mechanical Engineering and
The Graduate School of The University of Wyoming
in Partial Fulfillment of Requirements for the Degree of

DOCTOR OF PHILOSOPHY
in
MECHANICAL ENGINEERING

Laramie, Wyoming
December, 1994

-1 ‘ S T T RGN I A AAD kA N ELL Y - D NMDe W s Em—m——

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9524549

UMI Microform 9524549
Copyright 1995, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

302 North Zeeb Road
Ann Arbor, MI 48103

TR ERAILERZULA VB D RADEE B RIS BN QL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T A RERRRA B R E IV H S0 R KRS 5 VI IoBR sy 2 Hn Ry oy

Steadman, Sally J., Expert Systems in Engineering Design: A Prototype Application for

Injection Molding of Plastic Parts, Ph.D., Department of Mechanical
Engineering, December, 1994.

Recent developments in expert system shells have the potential to rharkedly impact
the use of knowledge-based expert systems for complex tasks like engineering design. The
knowledge required in an engineering design application is cateéorized and representations
are formulated for each of the knowledge types. A prototype expert system implements
each of the knowledge representations, integrating external knowledge sources -- a solid
modeler and a materials database -- with a hybrid expert system shell.

The context chosen for the prototype expert system is the design of an injection
molded plastic part; a subproblem, the design of a cantilever snap joint to join two
components, is representative of engineering design probiems. A designer, using a solid
modeling system, develops a conceptual design and then invokes the expert system to
determine geomeiric parameters for the design. The object-oriented, rule-based expert
system integrates various knowledge sources for injection molding: heuristic rules, design
specifications, geometric configurations and constraints, analysis software, and a material
properties database. The expert system, using these knowledge sources interactively with
the designer, determines the feasibility of the conceptual design, and modifies the design,
iteratively, until an acceptable design is formulated.

The prototype system has illustrated the utility of expert system shells for
engineering design problems. Expert system shells offer rich development environments
with interfaces to programming languages (and hence to a multitude of existing computer-
aided engineering software systems), access to databases, and graphical capabilities to
assist in developing user interfaces. Expert system shells deal effectively with the
complexity of engineering design, and they provide a design engineer, familiar with the

heuristics of the problem, with an easy-to-use tool for rapid development of a design aid.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TO THE GRADUATE SCHOOL.:

The members of the Committee approve the dissertation of Sally Jean Steadman

presented on October 11, 1994.

c?\ﬁ Pell Chairm
ZM@&% % /Vd,/,,toﬁ

/Raympnd G. Jacquot

A H .[.Agwp ﬂmﬁt

Michatl Kmetz'
k/}u,r/ I}X.{% %M ac.

e @m@

Donald A. Smnh

David E. Walrad1

: APPRO M

E Wﬂﬂl Head, fym m Engineering
g Thomas G. Dunn, Dean of Graduate School

B

§

.

g

2

>

;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SR URENIARNSN R BRI E O A vEFi

ACKNOWLEDGMENTS

I would like to acknowledge the assistance provided by Bill Palsulich, Mold
Engineering Manager for Cobe Gambro Hospal Medical Inc., in sharing his injection
molding expertise and contributing to the knowledge base for this research. Further, I
would like to recognize the foundation for this research, provided by Dr. Michael Kmetz,
Integrated Design Engineering Systems. I would also like to thank Dr. Kynric Pell for his

valuable support and encouragement throughout this project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- P NIRRAANS2NE-AREEIIST I 0 ET10NT B SNRLE 300 tasmapeme memmemm

TABLE OF CONTENTS

CHAPTER PAGE
1. INTRODUCTION.cuiiiiiiiiiie et eet e e et e e e sn s asasannnaes 1
Engineering DEesign «.c..cuiniiniimriiiiiiiiiiiiiiie e e 3

Status of Expert Systems in Design......coevvieiiiiiiiiiiiiiiiiiieas 3

Research ObjectiVeS .. ouuun et ittt et et e enas 4
Research FOCUS. .cuuniieiiiiiiiici ettt et tee e tee e ceenraeaas S
Prototype DevelopmEent.....cuvuniuiiiiiiiiiiiieiit et cerre e eee e e 7

2. KNOWLEDGE -BASED EXPERT SYSTEMS: AN OVERVIEWccccccaueeen. 9
PN (011177211 (SN 12

Tools for Building Expert Systemscoceiiiiiiiiiiiiiiiiiiiieieeeees 16

A History of Expert System AppliCations......ocoveereruuiueiinenernniienaencennns 18
SUMIMIAIY. . e eeeeeeceeerceeecetenaeeeaeaaneeccnsaocanaecansesannsennsenmencussanns 20

3. BUILDING A KNOWLEDGE-BASED EXPERT SYSTEMcccciciiiiiiniiannnnen. 21
Characteristics of Expert System Problems.........coooiiiiiiiiiiiiiiin. 21

T 22
Knowledge ACQUiSItION . c.uuieemiiiiaiieiiiariiieietie ittt eeeanees 23

(065 TeT0 131 17=4- 1 LoTo) IS 25
Developing @ PrototypPe «.c.ee e ieiiriciicii et 27
Validating the SYSIeIM. .. e uu e et ieiemeeeee e e e et eeemreemtecssanaans 28
3111100 1y 2N 28

4, EXPERT SYSTEMS IN ENGINEERINGccoiiiiiiiiiiiiiiiniineiiinceneeeaes 29
Problem SOIVING ... vttt et e e 29

Design MethOdOlOgY «eeveeeceeiiiiiiie e ieicieir it rtr s e e eanaes 30

Expert Systems in the Design Domain ... 33

Expert System Impiementations: Design Applications.cccceevevennannnnen.. 35

LT 1 I = 43
K310 4 1 o PR 44

5. PROTOTYPE DEVELOPMENTcittiiiiiiniiiiittiirieieeciietrneieseacnennans 45
Choosing an Expert System Building Tool......ccuveiiiiiiiiiiiiiiiiiieieniennn. 46

Kappa PC Developers Environment.coveeeiniieiiiieiiiniianiieeeneenanss 48
Application: Cantilever Snap JOINtS. ...coooviiiiieiiiiiiiiiiii e 49
Knowledge Representation «..ceueeeeenerneieeeeiuioiereteiiamrieuerereeneeeceennss 52

USEr INTBITACE tneeneiiiiiiiiit ittt et e e 5

INference Strate @IS .. eoenrn et eareeeeeeeneeraaaccae e raenaenreeeeceaacensacans 59

| Z1e1{01a’s 013 AIZTN E:1a (o) s OO 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. INTEGRATION OF EXTERNAL KNOWLEDGE SOURCEScccccieannnnns 63

External Interface Capabilities....ccovveieiuiiiniiiiiiiiiiiiieaeeee 65

Solid Modeling SOftwarecceuveiuieieiiiiieiiiiiiirce et 66

Database SOftWAIE «.eeeneieiirereieeeeeaeeeaneeessnseescnsmsecsassnnasacannnsenes 67

Hardware / Software EnVITONMENt «.coeeeierreeeneeeeeeeeneencncaeeseeemaccecnnenees 71

R F1318: o Tl o 2Tt 72

7. RESULTS AND CONCLUSIONS ...coiieieiitiaceeieceaecaaereeeaeneassnssonnsennns 73

RESUILS .t tiiiieiiiieeteteiereetareerecaeaecscacscnacacccanacacnsesecsoncnaemsennnes 74

CONCIUSIONS e eeinneeieieeeeeeaeeeeeeaaesansaeasaaneeamessacasscsssanssannnssasosas 76

FUtUre RESCAICH . o nieiieeiiie i ceieeeieeeeeeeeesereaaesaescasnssescansnnnceasannens 78
APPENDIX A: Listing of Classes (including Methods), Instances,

Rules, Goals, and FUNCHONS. ..ceueeeereeeeeecneecceeaanneeccaaneecens 81

APPENDIX B: Rule Trace EXamplesccceieciiminmriniiciieetercneeeneeeecannnns 105

APPENDIX C: IDEAS Snap Featureccccieiiiiiiiiiiiiiiiiiiiiiicenaaens 137

APPENDIX D: Edit Programcceeueeneieriiiiiareiicieecirennainieaecaaaeanes 139

APPENDIX E: User Evaluation FOIM..oneiiiiiiii i ceiiieeccoeeciceennne 141

REEFE RENCES ettt tiectteateeretaeeeseeessesnsnsnnsssnsessssesennresannsnsssanes 142

Y

T RS IEANMBAN NA 3NN U SIS 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COQIBENLRNR AN R (I0ERE § & e daelnlinfusaseeTe T

LIST OF TABLES

PAGE
Table 2.1 Characteristics of Conventional Programs vs. Expert Systems 10
Table 2.2 Historical Expert System Development......o.oueeeieiiinniiiiniiiiiieae.. 18
Table 5.1 Materials. ...oueeeiniieeceereereeiaeee e tratieetetineeeintenrneenreenaeenas 53
Table 6.1 PROSPECTOR Data Sheet ...ccuouininiiiniiiiiiiiiiiiiiiiiicieeceeee s 69,70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T UMERRIIAUIEAN IR WO L0HL4 . & Doy VAgMeismm T

LIST OF FIGURES

PAGE
Figure 2.1 Architecture of an EXpert Systemoneneenieiii e 12
Figure 3.1 Programming €nVIrONMENLScceereimrecrrenreerneerneeeeenssasenresnseasacans 25
Figure 3.2 Expert System Shells....cooiimiiiiiiiiiiccie e, 26
Figure 4.1 Design Process: An Iterative Model.......cooomiiiiiiiiiaeae 30
Figure 5.1 Graphical Presentation TOOIS ..c.veuiuiunmiiiiii e 48
Figure 5.2 Representative Snap JOINLS.cueeieieieiemimininiiiiiiiieeieeeeeieceeeaeaees 50
Figure 5.3 Cantilever Snap JOInt GEOMEtY. . ceuieueeiininiiiniiiiiiieeeienreeeennnanes 50
Figure 5.4 Object Hierarchycoeeueucimioiiiiiii et eeeree e ee 52
Figure 5.5 Feature Selection ..c..vcveieiuiaiuieieieiiiiiiiiniiieeeneeenenarareeenacncanns 55
Figure 5.6 Design Interface ...cocouoiniiiiiiiiii e e 56
Figure 5.7 Initializing Cantilever Configuration.......ccceeueuveieeneineinnieicenennnne. 57
Figure 5.8 Entering Geometry Data.......c.oieimiiiiiiiiiii e 57
Figure 5.9 Design ReSUlS.....couiiiiiiiiiiiiiii e 58
Figure 6.1 System ADPPIOachccceiiiieiiiiiiiiiiiiiiii e er e e e e 63
Figure 6.2 Cantilever Snap JOInt ObJect....cuvueuieieenieiiiiiiee e 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SRR RGNS BRE IR B ISR U] 3001 R AANFLIOH S0m RLAs amuns

CHAPTER 1
INTRODUCTION

The computer has become an essential tool for the engineer Computer-aided
drafting (CAD), finite element modeling (FEM), and solid modeling, along with special
purpose analysis programs are known as computer-aided engineering (CAE) tools. These
tools are used in every facet of the engineering process -- design, analysis, simulation, and
manufacturing, and are implementied at two distinct levels depending on the capabilities of
the hardware / software.

The lower level implementation of the CAE tools exists on DOS based, PC
compatible personal computer systems, and generally includes software with restricted
capabilities for the engineer: CAD, 3-D wireframe and/or surface modeler, and FEM.
These systems are primarily used by smaller engineering firms. Larger firms, on the other
hand, utilize more sophisticated implementations on UNIX based workstations, which are
generally faster than personal computers and offer a broader range of features and
capabilities. Software restricted to mainframe computers in the past now runs on
workstations. Typically, CAE software in the workstation environment is an integrated
system based on a three dimensional solid modeler. A mechanical designer, using an
integrated tool such as Structural Dynamic Research Corporation (SDRC) I-DEAS™ or
Dassault Systemes CATIA™, creates a three dimensional model. This model is then used
as input data for the engineering analysis incorporated in the integrated design software.
For example, the model can be analyzed using FEM or dynamic simulation techniques.

Regardless of the level of the CAE implementation, ihe key to productivity for both
the designer and for the entire product development ieam is the degree of integration of the
CAE tools. The computer-based design representation needs to be integrated with the
analysis and manufacturing tools or exported directly to these tools, with minimal user

intervention. Manufacturing firms are currently using solid models to automatically

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T MBRSSICI LN IR U RAWLIA R EIAAL. By AR 0 SUMEa gm0

generate machining code for milling machines, turning centers, and other computer
controlled manufacturing equipment.

Another, emerging, key to increasing productivity is concurrent engineering (also
known as simultaneous engineering). Concurrent engineering decreases the time required
to develop a product by considering the manufacturing process early in the design of the
product, or concurrently with the product design. In fact, this approach takes into account
not just the functionality of the product, but its quality, manufacturability, testability, and
maintainability.

Recent developments in Artificial Intelligence (AI), and more specifically in
knowledge-based expert systems, promise to significantly extend the use of CAE tools in
the interface between design and manufacturing. Traditional programming concepts and
algorithmic procedures do not lend themselves to this interface; the field of Al is attempting
to produce new technology to address these new concerns. Not only are expert systems a
part of Al but Al also includes natural language processing, image processing, robotics,
and neural networks. However, the research presented here is limited to knowledge-based
expert systems.

A knowledge-based expert system (KBES) differs from conventional software in
several important ways. One definition widely used for expert systems is:

.. . interactive computer programs incorporating judgment, experience, rules

of thumb, intuition, and other expertise to provide knowledgeable advice

about a variety of topics (Gaschnig, Reboh, and Reiter 1981, 7)

Expert systems are symbolic processors, in which the knowledge base, or expert
information, is separate from the methods for manipulating the knowledge base.

Generally, programming languages or tools incorporate the methods used to manipulate the
knowledge, so the developer concentrates on constructing the knowledge base, and not on
the procedures for processing the knowledge. An expert system uses the knowledge base
to reason about a problem in a2 manner similar to the process used by an expert in solving

the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SRS IO B K H H 11N B O BIEKY

ENGINEERING DESIGN

Engineering design is a creative process, best conducted by a knowledgeable
designer with years of experience. Through his experience, the designer has developed a
set of design guidelines, or heuristics, that he applies to new design situations in
developing a conceptual design. Often, for an experienced designer, this conceptual design
is near to the final, optimal design solution. Using analysis tools, the design is evaluated,
and if the original design specifications have not been met, the design is modified. An
expert designer will again use his judgment and expertise to modify the design. The
modified design is evaluated, and this iterative process continues until an acceptable design
is accomplished. Sometimes the specifications must be relaxed in order to arrive at an
acceptable design; again, the expert uses his knowledge to adjust the specifications.

A difficulty encountered in applying expert systems to a design problem is acquiring
the expert knowledge for the system. Often an expert cannot express how, or why, he does
something; typically, he has not thought about the processes he uses to solve a problem.

Engineering design is clearly becoming more of a team effort because the amount of
data and the scope of considerations involved in a significant project transcend both the
breadth and depth of any one individual’s experience. The segmentation of a design
project, for the numerous designers working on the project, is facilitated by database
structures and file management systems incorporated in the integrated software. The team
concept is often informal in smaller firms, but can be very formal and highly documented in
larger firms.

Problems encountered in mechanical design share some common characteristics.
They often involve a choice of manufacturing processes and a wide choice of materials, and
the mechanical designs are often fairly complex, three-dimensional artifacts. Mechanical
design software attempts to integrate both the material property data and manufacturing
process simulations in order to assist an individual designer.

STATUS OF EXPERT SYSTEMS IN DESIGN

Early expert systems have been applied to probiems such as an advisor for a finite

element program, and monitors or controls for manufacturing and chemical processing.

However, engineering design differs from these types of problems in two basic ways: the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WRREI IG/EMEIN MO N AISNIE 8 AAINI L4 ML R IR

v

4
diversity of the information (or knowledge) and the complexity of the engineering systems.
In engineering design there is no one, correct solution, but usually an optimum solution can
be identified by applying constraints like economics, physical limitations, and
manufacturing considerations.

Few expert systems exist for the engineering problem solving tasks of planning and
design, and most of the ones that do exist have been implemented using programming
languages or environments. Representative implementations for these tasks are discussed
in Chapter 4. Programming languages or environments have not promoted the use of
expert systems for design problems since they are relatively difficult to use, and are
particularly onerous to the typical engineer with limited programming skills. Tools are
available that are appropriate, reasonable to use, and that facilitate rapid development of
expert systems for complex tasks such as engineering design. Expert system shells fit
these requirements, but have not been traditionally applied to engineering design problems.

The knowledge required in a mechanical engineering design problem is a
combination of design rules and guidelines, analysis software incorporating engineering
models and governing equations, and database information about material properties and
specifications. The knowledge is provided by multiple sources, requiring a variety of
specialized knowledge representations, and needs to be integrated for fully functioning
systems.

Current expert system implementations make little use of data generated in existing
applications. Computer-aided design and solid modeling systems are widely used by
engineers, and produce geometric and feature databases. Databases for material selection
are also important tools for design, as well as the analysis information generated by
software such as finite element modeling. Since all of these tools produce data that can
significantly enhance the capabilities of an expert system for design applications, they
should be integrated with the expert system.

RESEARCH OBJECTIVES

This research investigates the feasibility of applying knowledge-based expert

systems to engineering design problems. A variety of tools currently exist for the expert

system developer, ranging from programming ianguages which require considerable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I MEREIFZQNUDBAKULIATIRID. & #2Luns B3 R parmams—""" "

5

understanding of the fundamental theory involved in expert system programming, to expert
system shells, which can be thought of as high level expert system languages. Expert
system shells appear to offer rich development environments with interfaces to
programming languages, access to databases, and graphical capabilities to assist in
developing user interfaces. Expert system shells are easy-to-use tools for the typical
engineer with limited computer skills, and provide a viable tool for developing expert
systems.

The goal of this research is to develop a generic approach, or template, for expert
system applications, based on expert system shells, that can be used by engineers in day-
to-day applications. To accomplish this goal, the steps in developing an expert system
application for engineering design problems must be formulated. The following tasks for
expert system development are explored, and formalized, in this research:

* investigate the use of expert system shells for design problems

* categorize the knowledge required to solve design problems

 formulate representations for the knowledge

* integrate the expert system with external databases and solid modeling software

* develop interactive capabilities, as well as graphical interfaces.

RESEARCH FOCUS |

This research focuses on manufacturing processes, which are integrally involved in
product design. Since the specific details of the manufacturing process impact the
appearance, strength, and long term stability of a product, the process needs to be
considered during the product design. Thus the designer needs to have detailed knowledge
of the specific manufacturing process.

Manufacturing processes have recently evolved from processes used since the
industrial revolution for the traditional materials of metals, metal alloys, and wood.
Piastics have been used since WWII; followed by composite materials in the last two
decades. The associated manufacturing methods of injection molding, blow molding, and
thermal forming, which did not exist prior io the 1950’s, are responsible for a major
portion of today’s consumer goods. However, the number of designers experienced with

these new materials and methods has not kept pace with the penetration of these materials

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SRS HYANSA B R NN § KU RIS A M L.

into the marketplace. Therefore, designers experienced with the traditional materials, as
well as novice designers, require assistance employing the newer materials in their designs.
The difficulty of using these materials in product design is compounded by the vast number
of plastic materials availabie, which currently exceeds 18,G600. The existing materials are
being alloyed and blended by suppliers to create new materials at a very rapid rate.

The design area selected for this research is injection molded part design. Previous
work done in this area (Kmetz 1986) provides the foundation for this research. Kmetz
developed software for adjusting conceptual part designs, using a set of generally accepted
rules applied by plastic designers. His work incorporated the rules in algorithmic
procedures and did not use an expert system approach. His application was also limited to
those rules which can be implemented in algorithmic procedures. A major source of his
design information is in the design handbooks which are generally available from
individual material suppliers. These handbooks contain the experience of expert designers.
Another source of information required for his work is the material property information
which can be found in suppliers’ manuals and databases and in independently published
materials.

A successful plastic product begins with a good part design, which is a result of a
thorough knowledge of design as well as an understanding of the process and material
being used. (Beall 1990) In feature design, a complex part is decomposed into its basic
elements: the nominal wall, projections off the nominal wall, and depressions into the
nominal wall. The nominal wall can be simplified to a set of flat plates, no matter how
complex the shape is. All projections -- reinforcing ribs, pegs, gussets, snap joints -- can
be addressed with similar guidelines. Likewise, all depressions are viewed as similar
design problems. Other plastic part features are combinations of these three basic elements;
therefore, guidelines can be used to design each basic element, and the elements assembled
to create complex geometries. Design guidelines often vary depending on the materials
chosen for the plastic part, and pertain to the moldability of a part.

The scope of the research presented here is reduced to a manageable level, but
demonstrates the viability of expert systems for design applications, by limiting the expert

system application to one basic element of a plastic part. The design of a specific

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WA BICT PSS LR I8 B JiA-SA W ARemN AN mEReEmTTT

TN RERS I HOR A

projection, a cantilever snap joint for joining two injection molded plastic parts, involves
the knowledge sources found in a generic design problem, and was selected as the focus of
this effort.

To design a snap fit, the experienced plastics designer uses a representative set of
the knowledge used in plastic part design problems. Heuristics, or the design rules, are the
basis for a conceptual design, or initial configuration. The conceptual design depends on
the material selected for the part and related material properties, and the functionality of the
part, i.e., the specifications for the design. Governing equations assist the designer in
determining the appropriate geometric relationships. Representations for the various
knowledge sources will be developed, providing a template for design problems in general.
PROTOTYPE DEVELOPMENT

The feasibility of using an expert system shell for engineering design problems can
be explored by building a prototype expert system. The first step is to identify a design
problem for the prototype implementation. This problem should be representative of
typical engineering design problems, to demonstrate the viability of expert systems as CAE
tools in the mechanical design area. It should also be confined to a fairly narrow domain,
to facilitate the implementation of the expert system. The design should involve each of the
knowledge types in an engineering design problem, to develop a template that can be used
in other design applications. If each knowledge type is incorporated in the prototype,
extensions are easily made to the template for more complex problems. The context
selected for this research, injection molded part design, fits these specifications.

Another important task in developing the prototype is selecting an appropriate tool
for the expert system implementation. Many expert system shells are available, offering a
range of features and capabilities. The prototype should demonstrate the ease with which a
typical engineer can develop an expert system for design applications.

A survey was conducted to identify expert system shells which provide the
necessary development environment for this research. The criteria used in evaluating
various products included ease of use, range of available features, implementation
platforms, and cost. The tool selected was Kappa PC™, available from IntelliCorp, an

early leader in developing software for expert system applications. Kappa PC runs on IBM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T RIS LI AtTIIAT KR S A R0LR B R Ok B ke U BpEEIEETETT

PC® compatible hardware. Another product available from IntelliCorp, ProKappa™, isa
workstation version of an expert system shell. Although IntelliCorp offers both products,
they were developed independently, and are not completely compatible. Therefore a system
developed on a PC cannot be migrated to a workstation without conversion efforts.

An important aspect for software acceptance is the user interface. A graphical
interface can make a system easier to learn and easier to use; extensive explanation facilities
build a user’s confidence in the system, and thus promote its acceptance. The expert
system should accommodate use by novices, as a tutor, and by experts, as a design aid.
An interactive interface allows the user to participate in the design process, instead of
merely observing the results.

The resulting exper* system is a computer-aided engineering design aid. The expert
system, using the knowledge sources interactively with the designer, assists the design
engineer in developing a conceptual design and determining its feasibility. The expert
system described here not only incorporates design rules (both heuristics and governing
equations), but interfaces to a materials database and to a solid modeling package. The
expert system iteratively evaluates and modifies the design, if necessary, until the
specifications are sufficiently accommodated. The prototype system does not identify an
optimal solution, but this functionality can be easily incorporated in the expert system by
including additional rules that address constraints related to conditions for optimal design.

The prototype expert system is implemented in a fairly narrow domain. To be an
effective design tool, the research must be extended from designing a basic feature to
designing more complex parts and their corresponding mold designs, incorporating
sophisticated analysis techniques for flow within a moid and structural properties.
Extending the expert system to other manufacturing processes will produce an even more
valuable tool. However, the value of this research is in establishing the guidelines, or

templates, for developing expert system tools for the design process.'

' This research has been accepted for publication (Steadman and Pell 1994; Steadman 1994).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WIREAGNEANI N A A G R N B 2E RUROD! T PR WK FARLATRS & cams aw v ===

1

CHAPTER 2

KNOWLEDGE-BASED EXPERT SYSTEMS:
AN OVERVIEW

Artificial Intelligence (AI) is an area of computer science dealing with the emulation
of human thought processes. Al is concerned with understanding human problem-solving
strategies and incorporating (or simulating) these strategies in computer programs.
Knowledge-based expert systems (KBES) are a specific application of Al. Edward
Feigenbaum, generally regarded as the father of expert systems, defines an expert system
as (1981, 221):

an intelligent computer program that uses knowledge and inference
procedures to solve problems that are difficult enough to require significant
human expertise for their solution.

Another definition is:

. .. solves real-world, complex problems using a computer model of expert
human reasoning, reaching the same conclusions that the human expert would
reach if faced with a comparable problem (Weiss and Kulikowski 1984, 1).

However, the most widely accepted definition is given by Gaschnig, et al. (1981):

Expert systems are interactive computer programs incorporating judgment,
experience, rules of thumb, intuition, and other expertise to provide knowledgeable advice
about a variety of tasks.

These definitions also apply to many existing computer programs, which are not
usually thought of as expert systems. Most authors make this distinction by defining an
expert system to be a program in which the knowledge base, or expert knowledge, is
separated from the methods for applying the knowledge, i. e. the inference mechanism,
reasoning mechanism, or rule interpreter. In fact, Feigenbaum, McCorduck, and Nii

(1988, 7) state that the power of an expert system depends on the amount and quality of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
knowledge it possesses, not on the particular formalisms and inference schemes it
possesses.

Other characteristics of expert systems include (Adeli 1988, 6; Fenves 1986, 3;
Maher 1987, 5):

* knowledge-intensive programs

* knowledge usuaily divided into many separate rules

* highly interactive

* user-friendly, intelligent, user interfaces

* explanation facility for reasoning

° incremental growth capability

knowledge is readable and understandable

Expert systems can provide advice, answer questions, and justify their conclusions. The
differences between conventional programming and expert systems are summarized in
Table 2.1 (Maher 1987, 4).

Table 2.1. Characteristics of Conventional Programs vs. Expert Systems

CONVENTIONAL PROGRAMS EXPERT SYSTEMS

Representation and use of data Representation and use of knowiedge

Knowledge and control integrated Knowledge and control separated

Algorithmic (repetitive) process Heuristic (inferential) process

Manipulation of large databases Manipulation of large knowledge bases

Programmer ensures Knowledge engineer relaxes uniqueness
uniqueness and completeness and completeness constraint

Midrun explanation impossible Midrun explanation possible

Numerical processing Symbolic processing

Solving complex problems involves a large knowledge base and extensive
searching of that knowledge. A human expert rapidly narrows the search by recognizing

patterns and using appropriate heuristics, or rules of thumb. With the technology currently

W EASHPIRINTINA S F1EUE. B 2N05A 1405 B R

e 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

handhantand

- MIRAXLV.

11
available, expert systems are limited to narrow, highly specialized, well defined domains
(contexts). They are not able to reason broadly over a field of expertise. With future
improvements in computer memory size and speed, this limitation will gradually disappear,
and expert systems wili be applied to wider domains, and more compiex probiems. Expert
systems are currently expensive to implement, requiring significant investments of human
and capital resources. These costs will also diminish with technological advances.

Expert systems are employed in many engineering fields for a variety of reasons.
They are used to compile and archive knowledge from employees and external experts to
develop intellectual capital for a firm. Expert systems can be available any time of the day
or night, not just during business hours; access can be distributed to many employees and
locations. They provide consistent answers, and can be updated with new expertise as new
policies or methods are implemented. They do not bias judgments, or jump to conclusions,
but systematically consider all possibilities. They attend to details, and may produce
several solutions for a particular set of conditions.

However, expert systems cannot reason from axioms or general theories, or by
analogy. They do not learn, and they lack common sense. The performance of an expert
system rapidly deteriorates when it is extended beyond the narrow task that it was designed
to perform. (Harmon and King 1985, 7)

Companies using expert systems have measured both qualitative gains and
quantitative gains. Qualitatively, expert systems have improved not only the quality, but the
consistency of designs and their compliance with standards, and have encouraged
innovation among the users of the systems. Quantitatively, less time is spent in
bookkeeping tasks resulting in more productive time for engineering and designing tasks;
design data are available earlier in the product cycle, and can be used in downstream tasks
such as detailed documentation preparation, material specifications, and job costing. In
measuring productivity, one example is given by the Babcock and Wilcox Power
Generaticn Group in the design of heat transfer components where expert systems have
decreased, by two-thirds, the time to model the components; in addition, detail drawings

are automatically generated along with other manufacturing documents. (CIME 1989)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SV QRS R HO I AN R I 8 20018 kR d e

12
ARCHITECTURE

An expert system consists of three main components: a knowledge base, an
inference engine (search strategy), and a domain (or context). Additional components may
include a user interface, an explanation facility, and a knowiedge acquisition facility.

Figure 2.1 illustrates these components.

The knowledge base consists of the facts and the heuristics about the domain. The
heuristics include rules of thumb, and the strategies limiting the search for solutions in large
problem spaces, which are usually empirical, and are based on experience and intuition, not
mathematical or scientific proof. The inference engine controls the reasoning operations,
i.e, it is the executive for the expert system. The inference engine fires (applies) the rules,

and may alter the knowledge base.

IINFERENCE ENGINE b

ACQUISTTION EXPLANATION USER
Ao Ty FACILITY [INTERFACE

3

Figure 2.1. Architecture of an Expert System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

QIR AT FH R EURGA B RE SN JARE xR ey simmmmee—

13

The user interface should provide for several user-modes: client -- getting answers
and explanations to problems, tutor -- improving or increasing the system’s knowledge,
and pupil -- harvesting the knowledge base for human use. (Michie 1980, 370)

KNOWLEDGE BASE. The knowledge can be represented with various schemes:
production rules, predicate logic, semantic networks, frames, and object-oriented
frameworks. When several, independent, experts cooperate to solve a problem, a
blackboard model is used. A brief discussion of these schemes follows.

Production Rules. Production rules are IF-THEN (or condition-action, or
antecedent-consequent) statements, where satisfaction of one or more conditions results in
one or more actions. Each rule is an unordered, data sensitive unit, contrasted with the
sequenced instructions of procedural languages. The conditions are stored in a database,
and the actions modify the contents of the database when they are invoked. (Newell and
Simon 1972), (Davis and King 1977)

Predicate Logic. The simplest form of logic is propositional logic. Propositions

can be either TRUE or FALSE and can be connected by logical operators (and, or, not,
implies, equivalence) to form a propositional calculus of constants, functions, and
predicates. Predicates are used to represent relationships, e.g., SUM (A, B, RESULT).
Predicate calculus is a structured extension of propositional calculus employing variables
and quantifiers (all and some). It introduces specific roles for the elements of the
propositional calculus and allows for deductions to be calculated; the characteristics of a
particular object can be deduced from more general statements about the attributes of some
or all objects in a set to which the object belongs. (Dym and Levitt 1991)

Semantic Networks. A semantic network is composed of a set of nodes,
representing objects and their descriptors, and a set of links (semantics) connecting the
nodes, representing the relations among the nodes. Commonly t. ,2d links are is-a and has-
a links. Semantic networks have been used primarily in natural language research.

(Quillian 1968)

Frames. A frame (or schema) is used to describe an object, and is a special case of

a semantic network. Itis composed of slots which store information about the object. This

information may be default values, pointers to other frames, sets of rules, or procedures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ﬂ"‘llmm&nnnnmxmm EAESEInIAD mim

14
Frames may be linked in a tree-like structure (network), thus allowing inheritance of slots
and their values from one level of nodes to subsequent levels. (Minsky 1975)

Object-Oriented Frameworks. Object-oriented programming involves the use of
objects, which are extensions of frames tightly coupied with operations (methods). Each
object is described by a number of attributes, which may be integer or real values, strings,
or complex data structures. The behavior of an object is defined by methods, or
procedures which manipulaie the state of an object. Objects interact with each other by
sending messages to execute one or more methods. Objects are arranged in a hierarchy of
classes and subclasses having similar attributes, with lower classes inheriting methods and
attributes from higher classes. Subclasses are specializations of their parent classes.
(Stefik and Bobrow 1985)

Blackboard. The blackboard model was developed to provide a reasoning
mechanism when multiple knowledge sources exist. The blackboard serves as the location
for posting communications (messages) between the various knowledge sources. It also
keeps track of the current state of the problem. The blackboard model is generally used for
complex problems that must be partitioned into subproblems (knowledge sources). (Nii
1986)

The knowledge representation scheme should be chosen as the first step in
implementing an expert system. In order to choose an appropriate scheme, the knowledge
engineer must first organize the knowledge, gaining a familiarity with the domain. Some
general guidelines in choosing the appropriate representation are:

« simple production and logic systems are good for poorly understood domains,
where the knowledge structure cannot be well described

» structured production and frame sysiems increase run-time efficiency and reduce
the effect of the volume of knowledge on run-time, but are more difficult to implement

o logic systems are more difficult to implement for mathematical expressions.

INFERENCE ENGINE. The inference engine selects which rules to examine (in
either a forward or backward direction), evaluates the rules, generates new facts or
retrieves facts needed by rules, to generate solutions for a set of conditions. When more

than one rule is eligible for firing, several options are commonly implemented for conflict

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- AN FREIREENRAR BN ITAGE BRI 7H RS Rt i TR sty Q1M Z et am

15
resolution: breadth-first, depth-first, and best-first. Other strategies used to select which
rules to examine include assigning rule pricrities, using the timing of candidacy, the textual
position, and the applicability of the rules to the task at hand. (Winston 1984)

Forward and Backward Chaining. iIn a forward chaining strategy, the rules are
searched to reach conclusions from information provided by the user, facts in the
knowledge base, and previous conditions. As conclusions are reached, premises or other
rules are satisfied, and the search continues until no more conclusions are reached. Since
this strategy works from the data to the goal state, it is also called data-driven. Forward
chaining is appropriate for problems where the solution is chosen from a very large number
of potential solutions, and a small amount of information from the user is available.

In a backward chaining strategy, a goal is selected and then the rules are searched
for those rules whose consequent actions match the goal. Backward chaining is also called
goal-driven, and is appropriate for problems with a limited number of solutions, or when
all the available data does not need to be analyzed.

Most real problems use a combination of both strategies. A fully integrated system
allows the expert system developer the flexibility to solve complex problems.

Search Options. The hierarchy of rules can be arranged in a search tree where the
search for a solution is a traversal through the tree. A search can identify a single path
through the tree, or exhaust all of the possible paths (or solutions) through the tree.
Terminating the search when an acceptable solution has been identified is much more
efficient, but does not necessarily identify an optimum solution.

In a breadth-first search, the nodes (or rules) are searched layer by layer, one layer
ata time. Thus all of the rules at a given depth are examined to see if they match the
conditions for the solution, before any of them are expanded. Breadth-first search is most
effectively used when most of the solutions are at relatively shallow depths of the tree.
When the solutions are fairly deep in the tree, breadth-first requires extensive processing of
a large number of layers before any solutions are identified.

For each node in a depth-first search, a path to a lower node is picked, ignoring all
alternatives at the same level, thus shooting straight down the tree along any path. When a

branch terminates, another path is found, until ali alternative paths have been located.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

QUSRI LTH R R 1RSI LT BRI AL

16
Depth-first search can also be fairly expensive when the solution is located along the last
paths identified, or when the first paths are reiatively long.

In a best-first search, the next node added to a path is the “best” node available. All
the available nodes are examined, and the node to expand is selecied according i0 some
criteria. Best-first search is more likely to find the shortest paths than other methods, since
it always chooses the node closest to the solution criteria.

TOOLS FOR BUILDING EXPERT SYSTEMS

The expert system developer has a range of tools available to use for the
representation and control of the knowledge: programming languages, programming
environments, and expert system shells. These tools provide varying levels of support for
explanation facilities, graphics, and other features influencing the ease of use of the expert
system. Many of the tools provide for interfaces to existing databases, Computer-Aided
Drafting (CAD) packages, and to the multitude of analysis software (such as finite element
modeling). These interfaces, as well as facilities for knowledge acquisition and uncertainty
management significantly impact the ease of development of the system.

PROGRAMMING LANGUAGES. Procedural languages like FORTRAN and
BASIC are very effective for programming mathematical, algorithmic tasks, but are not
particularly useful for symbolic reasoning. LISP (LISt Processing) and PROLOG
(PROgramming LOGic) are generally used by Al programmers. PROLOG, used mainly
by European and Japanese programmers, contains constructs to manipulate logical
expressions, while LISP has operaiors to facilitate list processing. C is emerging as an
alternative to LISP, due to its portability and ability to interface with existing analysis
programs, which are usually written in FORTRAN or C.

PROGRAMMING ENVIRONMENTS. A programming environment is closely
associated with a particular language, and contains chunks of the code (similar to
subroutine libraries) that are useful for particular tasks. Most environments can aiso be
classified as hybrid tools. Hybrid tools combine a rule-based approach with procedure-
oriented programming and object-oriented programming. These tools are well suited to
engineering problems, which are generally complex problems requiring a variety of

representation schemes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VTRIBERAREZHAAN B E §1AA 8 SR80 MR B K FRL IS JAR OIS0 B Lam mas o= m=r

17
EXPERT SYSTEM SHELLS. Expert system shells facilitate the rapid development

of expert systems. They incorporate specific knowledge representation schemes, inference
mechanisms, and control. Early shells were developed by stripping the knowledge from an
expert system. Many of the available commercial shells have facilities to interface to
existing databases and to procedural languages, as well as extensive graphics capabilities.

KNOWIEDGE ACQUISITION. Knowledge acquisition is the transfer of

problem-solving expertise from some knowledge source -- human experts, textbooks,
databases -- to a program. This expertise is a collection of facts, procedures, and
judgmental rules about the domain, and is often very difficult to either extract from a human
expert or to represent in a knowledge representation. This task can be automated with
inductive inference methods that generate new rules from training examples. The research
in this area is in its infancy, however, and has exposed difficulties in achieving consistency,
correctness, and completeness in knowledge bases. Computer aids do exist to assist in
knowledge acquisition: knowledge-base editors and interfaces, explanation facilities, and
knowledge-base revision. Sophisticated editors are being developed that facilitate
instruction and check for semantic inconsistencies. These editors, along with a facility to
explain the basis for reasoning, affect the acceptance by the user and/or the expert.
Semantic consistency checks and automated testing help in updating the knowledge base, to
minimize introducing new errors into the expert system. (Buchanan et al. 1983, 149 -157)

UNCERTAINTY MANAGEMENT. The knowledge in the expert system may not
be exact. Several methods are commonly used to deal with uncertain or incomplete
knowledge: certainty factors, Bayes theorem, and fuzzy logic. Certainty factors are
informal measures of confidence; Bayes theorem provides a method for calculating
probabilities; and fuzzy logic applies to sets of information with unsharp or ‘gray’
boundaries. (Bonissone and Tong 1985, 241 - 250)

HARDWARE REQUIREMENTS. Early expert system implementations were on
hardware devoted to artificial intelligence tasks, such as Symbolics, LISP Machines Inc.
(LMI), or XEROX Al These specialized machines are relatively expensive and are not
very useful for general purpose computing tasks. Expert systems are alsc available on

mainframes, minicomputers, workstations, and PC level machines. Some systems are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WIRIEEIRTRILAI AN B I R3S BRI NDRE RIS IS0 £ Iua a0 s

18
available on all levels of hardware, an advantage in developing a system for distribution. A
system can be developed on a2 VAX class machine with a rich development environment,
and then implemented on PC class machines at relatively low cost.

PERFORMANCE. Expert system performance is inversely proportional o the

number of elements being reasoned about, and is dependent on the knowledge
representation scheme, how structured the knowledge base is, and obviously, the hardware
chosen. Expert systems are knowledge intensive and have considerable memory
requirements. Misusing a tool, i.e., using forward chaining in a backward chaining
environment, can significantly impact the performance of the system. In general, an
efficiently written production system is more efficient than a hybrid tool using rules.

The performance of a system is also dependent on human factors: ease of use,
familiarity, understandability. Its productivity is associated with the ability to provide
assistance. Other factors influencing performance are portability and extensibility.

A HISTORY OF EXPERT SYSTEM APPLICATIONS

A brief discussion of some early expert system applications illustrates the historical

development of expert systems. Table 2.2 summarizes these applications. More recent

works are outlined in Chapter 4.

e

Tabie 2.2. Historical Expert Sysiem Development

SYSTEM DATE DEVELOPER
DENDRAL 1965 - 1979 Buchanan & Feigenbaum

Stanford Heuristic Programming Project
MACSYMA 1968 - 1982 II\Edri%}eman, Martin, & Moses
HEARSAY-1&II 1970- 1976 Erman, Hayes-Roth, Lesser, & Reddy

Camegie Mellon University
INTERNIST 1974 Pople & Myers

University of Pittsburgh
MYCIN 1976 Shortliffe

Stanford Heuristic Programming Project
PROSPECTOR 1978 Duda, Gaschnig, Hart, et al.

Stanford Research Institute (SRI) International
SACON 1978 Bennett & Engelmore

Stanford Heunstic Programming Project
PUFF 1979 Kunz, Aikins, Shortliffe

Stanford Heuristic Programming Project
R1 XCON) 1981 McDermott

Carnegie-Mellon University & DEC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GQEESHEZIRNRBN 112 8§ S UD M Sinhien

N

19

DENDRAL originated the fundamental concept of expert systems, manipulating
large amounts of expert, heuristic knowledge in a computer program. The program is
designed for use by organic chemists to infer the molecular structure of complex organic
compounds from their chemical formulas and mass spectrograms. The heuristic
knowledge of expert chemists is incorporated into a rule-based system. DENDRAL'’s
success proved that expert systems could be developed and launched researchers on the
study of knowledge-based systems. (Buchanan & Feigenbaum 1978)

MACSYMA is a large, interactive computer system designed to assist
mathematicians, scientists, and engineers in solving complex mathematical problems.
Inputs to MACSYMA are formulas and commands, and outputs are solutions to symbolic
problems. MACSYMA is widely used by researchers in government laboratories,
universities, and corporations. (Rand 1984)

HEARSAY-I & TI are speech understanding systems. Each knowledge source

contributes information to a common working memory, or blackboard. HEARSAY-II
demonstrated how multipie knowledge sources could be integrated in very complex
problem solving. (Erman 1980)

INTERNIST assists a physician in making multiple and complex diagnoses in

general internal medicine given a patient’s history, symptoms, or laboratory test results.
The system is one of the largest medical expert systems developed, and therefore uses a
structured approach for the knowledge base. INTERNIST must consider not only a very
large number of diseases, it must also consider all the possible combinations or interactions
among these diseases. Because of the structure and size of the knowledge base, the
program does not perform very well; additional development has been done with the
successor, CADUCEUS, to make the program more attractive to physicians. (Pople,
Myers, and Miller 1975)

MYCIN is the most famous of the early expert sysiem projects. It diagnoses blood
and meningitis infections and recommends appropriate drug treatment, on the basis of an
interactive dialogue with a physician about a particular case. Each rule has an associated
certainty factor, indicating the expert’s level of confidence in the rule. It also has an

explanation facility to justify the inferences made by the system. MYCIN exemplifies the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CEDSIVANIE R AR ESNEE R BT WA

I

20
essence of a typical expert sysiem. The developers subsequently built EMYCIN -- an
empty MYCIN, or MYCIN without its knowledge base. EMYCIN contains all the
machinery needed to reason about a knowledge base and to conduct consultations with a
user. (Shortiiffe 1976)

PROSPECTOR aids the geologist in finding ore deposits from geological data. A
combination of rule and semantic networks are used to represent the knowledge. The
system contains a knowledge acquisition system (KAS) to facilitate the acquisition of
knowledge. Information is either requested from the user, or it can be volunteered. (Duda,
Gaschnig, and Hart 1979)

SACON advises engineers on the use of the finite element structural analysis
program MARC. SACON was developed using EMYCIN to evaluate EMYCIN’s
environment for diagnostic applications in other domains. (Bennett and Engelmore 1979)

PUFE diagnoses the presence and severity of lung disease in a patient by
interpreting measurements from respiratory tests administered in a pulmonary function
laboratory. PUFF was built to demonstrate the practicality of using the shell EMYCIN to
prototype additional systems. (Kunz et al. 1978)

RI(XCON) assists in configuring VAX computer systems for Digital Equipment
Corporation, and is the largest, most mature rule-based expert system in operation. From a
customer’s order, R1 decides what components must be added to produce a complete
operational system and determines the spatial relationships among all the components. It
also outputs a set of diagrams of these relationships. It was developed using a
programming environment tool, OPS5. (McDermott 1982)

SUMMARY

Al research has been underway for more than three decades, but it has only been
since the late 80’s that its impact has been measurable. The most notable and visible results
are in the area of expert systems, the implementations of which have exploded in the past
several years. To effectively use expert systems, we must understand their capabilities and
limitations; they are not the solution to every problem. They are, however, a viable

technology providing a new approach for solving many decision problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TN BRAAFIINAKIAN $23R1- 0 B3R FL3 KRR 0 B e Lu s &= e =2 =

CHAPTER 3
BUILDING A KNOWLEDGE-BASED EXPERT SYSTEM

The first step in developing an expert system application is to determine if the
problem is suitable to an expert system. Some problems are better soived by conventional
programming tools; other problems exhibit characteristics that are better solved by expert
systems. Once an expert system approach is selected, the process of implementing the
system, or knowledge engineering, begins. The developer, in this case aiso called a
knowledge engineer, is responsible for acquiring the knowledge and embedding it in an
expert system. The knowledge engineer must choose an appropriate tool for the expert
system implementation, and then develop a prototype to test the implementation.
CHARACTERISTICS OF EXPERT SYSTEM PROBLEMS

Problems to be solved by expert systems share some important characteristics (Dym
1985, 18; Winston 1987, 15 - 16):

¢ the domain knowledge is highly subjective, judgmental, and rich in reasoning

* the knowledge cannot necessarily be coded or organized

e an expert is much better at solving the problem than an amateur

e the problem is clearly defined, in a fairly narrow domain; the expert system’s
complexity will naturally grow as the system evolves

* adequate data is available

o atleast one expert is available, and committed, to the project and can explain the
reasoning used in solving the problem

* the task is not too easy nor too difficult for the expert to solve; it should take a
human expert from 1-12 hours to solve the problem.
Conventional programming techniques have not been successfully applied to problems
exhibiting these characteristics, and expert system implementations will not be successful
unless these criteria are met.

21

ra

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SRR N R R LS 88300 rawan

22

Even though expert system developers experience some of the same problems that
conventional system developers experience, some myths about expert systems have arisen
(Fox 1990, 13 - 16). Among these myths are that expert systems do not make mistakes,
small prototype systems can be scaled up into full-scale solutions, expert systems can be
easily verified and validated and are easy to maintain, and that if an expert exists, an expert
system can be created. These myths are worth noting, in order to avoid making mistakes,
and thus to build more effective systems.

TASKS

The types of problems that have been solved by expert systems can be classified as:
interpretation, diagnosis, monitoring, control, prediction, repair, instruction, planning, and
design. These tasks can be grouped into derivation problems and formation problems.

DERIVATION. Most of the early expert systems solved derivation problems. The
outcome, or goal, exists in the knowledge base and the solution is to identify the path to the
goal. Typical tasks are:

o Interpretation. Analyzing data to determine the meaning. The data is often
unreliable, erroneous, or extraneous.

* Diagnosis. Identifying problem areas or faults based on potentially noisy data.
Often the first step is to interpret the data which can be incomplete, inexact, or from faulty
Sensors.

* Monitoring. Interpreting signals continuously, or intermittently, and warning
when intervention is required.

* Control. Adjusting or regulating a system based on signals monitored.

o Prediction. Inferring likely consequences from given situations.

* Repair. Acting to rectify faults in a system. The first step is to diagnose.

* Instruction. Identifying deficiencies in a student’s problem solving knowledge
and recommending actions.

FORMATION. Most engineering problems are formation problems, complex
procedures where the solution is not already in the knowledge base. The solution space is

generally very large, and methods must be implemented to prune the number of likely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BRI S AR ISR B IR P ER S NSRS

23

outcomes from the solution space. Typical tasks are:

 Planning. Creating a program of actions to achicve 2 goal, subject to specified
constraints. Excessive use of resources should be avoided.

e Design. Creating objects that satisfy certain specifications. In large design
problems, the task is usually divided into 2 number of subtasks that interact with one
another. Priorities must be established for resolving conflicting goals.

In formation problems, since the exact solution does not necessarily exist in the
knowledge base, it must be generated by the inference mechanism using the knowledge
base. A generate and test method is often used; all possible solutions are generated, then
tested, until a solution is found that satisfies the goal condition. Another method, problem
reduction is also used for formation problems. Problem reduction involves factoring the
problem into subproblems (subsystems). Formation problems usually use a hierarchical
approach to develop a plan at successive levels of abstraction. They frequently involve
backtracking, when no solution exists along the current path, and constraint handling for
interaction between the subsystems.

KNOWLEDGE ACQUISITION

The process of extracting knowledge from an expert (or source of expertise) and
transferring it to an expert system, knowledge acquisition, is an important and difficult
problem. Knowledge acquisition plays a major role in designing an expert system, and is
viewed by many authors as a bottleneck in the construction of expert systems.

Buchanan (1983, 140 - 149) has described the following elements as part of the
knowledge acquisition process:

 Identification of experts, resources, and knowledge engineers

* Conceptualization of tasks and subtasks, and the techniques used by the expert

» Formalization of concepts by mapping them into representation schemes

* Implementation by encoding knowledge, and iteratively acquiring and testing the
system’s expertise

* Testing and refinement of the prototype, by an expert; exhaustive testing is

infeasible, due to the combinatorial explosion of the possible solution states.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U AR PRHUA S I R EERIO. H FALGE LIARA R M asammmm e

24

Eliciting knowledge from the expert is a time consuming process. Often an expert
can tell you what he does, but not how he knows to do it. Encouraging the expert to
describe his expertise in the most natural way may help elicit knowledge about the
procedures he uses in his problem solving. The expert tends to keep the whole problem in
mind, and can find it hard to focus on one sub-issue when several, related sub-issues are
also present. Once a prototype system is implemented, it becomes difficuit for the expert to
distinguish between fundamental problems in the knowledge base and superficial problems
in how the program presents information to the user. Several methods have been used in
knowledge acquisition (Hart 1985, 456 - 460).

* Interview. The knowledge engineering explores, with the expert, the kinds of
data, knowledge, and procedures needed to solve specific problems. This process is
difficult to structure, and since the expert is often not explicitly aware of the methods he
uses, he often loses interest in the process.

* Protocol analysis. An expert examines documented cases and talks about them.
This is more structured, thus reducing some of the problems with interviews. A variation
of this method involves watching the expert solve real problems on the job.

* Induction. A set of specific examples, a training set, is used to automate the
induction of rules or patterns, i.e., machine learning.

* Repertory grid technique. An expert produces examples and two valued attributes
for the examples. The grid is a cross-reference between the examples and the attributes.
This technique helps the expert structure and classify the knowledge.

In each of these techniques, the knowledge engineer often needs to guide the expert in
formulating the data and procedures that will produce a relevant, and useful, knowledge
base.

To implement the expert’s knowledge in the expert system, the knowledge engineer
will need to choose an appropriate representation and inference strategy. He must be
familiar with the various knowledge representation schemes and inference strategies in

order to choose the schemes that best fit the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25
CHOCOSING A TOOL

A multitude of expert system building tools are available (van Koppen 1988;
Waterman 1986; Harmon and King 1985; Hayes-Roth, Waterman, and Lenat 1983). Some

tools, widely used for expert system development, are summarized in Figures 3.1 and 3.2.

Z
)
) o O B
S 8 z £ 8 £ % =z =
(o) hd (7] E @) o @] 9 v =
2 2 &5 © 8 2 B B < g 9)
2822523 £ 82
@ 1ncieded g 0 5 8 =5 ¥ = 2 S E S &
O Notincluded 2= 2 2 B 8 2 5 2 E &
= & £ 8 2 S B & x5 & 5 8
Comm Hypothetical
ART e|dolo!e|elee|0|6|e| o™ |
Blackboard
HEARSAY-TI! @000 |IOIO|O|O|0|O|fusp architecture
C External
KEE @IS |SIO|0|®|S|p " databases
C Language
Knowledge Craft @ G C G 6 6 O O G 6 L;)sr.;;m on inteffacis
LOOPS DI OCIG®IOIOIO|O|0O]| O |mtentispp
Pattern
OPS5 Q O O O Q O O O O O c tching
. English-like
Highly
SMALLTALK Ol|0|0|@®@|[O|O|O|OIiI0O|® interastive

Figure 3.1. Programming Environments

UHERIASRTI0N 0 0§ IR0 T 01 0 UL L YRR 08 s =t e —— —

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TNUSRNIBIENBY RAH AR 18§ 8108 mMmeiniee

5
o O E E
° £ £ 2 4
—
22228 ¢ 2
A~ £ 2 £ 2 2 & 2
5 § = O Z 4 2
a =B B o Q E
@ nciuded 2 2 = 2 = 8 E = <
QO Notincluded é S S % ; z H é S ,:_:) o
=) = 2 < £ &
g S Z M o - = Q9 =
o <
EXPERTSYSTEM 5 < E 5 2 5 & %‘ = = =
SHELLS(LARGE) & K © = /R O ¥ o O 4 °©
3-D Solid:
Concept Modeler O O O O O O O O O Modeloer °
Consist
EXPERT eiC|o|e! & || |2 O rorman|fmisteny
Induction,
Real ti
) ole|olojofole|o|efus [
GOLDWORKS II ‘ G 0 ‘ 0 0 O 0 0 E;J;mon Ext. interfaces
Nat. La
GURU @|0j0j¢g| @@ 0O|j@ej@ rel DEMS
INSIGHT2+ @|0|O|(8|®|@]|0|®| O [pasca |Man funcions
English-lik
M1 e|ololelelelole|o]|c e
Personal LISP functions
Consultant e e O 6 G e O 6 O Lop o
Rule induction
RULE-MASTER @i 0O|0|® ®@I®|0® ®/0]c Lang interfaces
y a ainnalalnlala Procedure
.1 WiwiVivViw|i w | \Ujiw]|]wi]C adented
Smart Model OlO0|0|0 O|O|0O OO0 CAD
EXPERT SYSTEM
SHELLS (SMALL)
- Rule induction
Ist Class Fusion Q O O Q O ’ O O O PASCAL |Lang interfaces
Kappa PC e Oleejele[O]e]le® Lang interfaces
LISP Hypertext
Knowledgepro - BEORN BN @|O|O @@ PASCAL |External int.
. PRL
Level5 Object 0|09 ®|®|0O @ | @ | PASCAL dBASE
Nexpert Object eile e ® (@) | @iC External int.
External int.
VP-EXPERT @ioioiea|l@ela|0le ® ¢ Hypertext

Figure 3.2. Expert System Shells

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

IINIRRA AR N RN YA 0 WINPT

27

Programming environments give the most flexibility in developing systems, but are
considerably more difficult to learn and to implement than expert system shells. An
important consideration in choosing an implementation tool, is the knowledge
representation and inferencing schemes selected by the knowledge engineer. Many of the
newer expert system shells offer a variety of schemes, and are therefore suitable for
developing a variety of expert systems applications. Derivation problems are best suited to
rule-based systerns, formation problems to object-oriented systems.

In general, the developer should select the highest level programming environment
possible, typically a hybrid tool. A tool with interfaces to existing algorithmic code may be
required for some applications. An expert system shell with graphics capabilities will
enhance the development of interactive graphical applications.

DEVELOPING A PROTOTYPE

A prototype system can test the adequacy of the chosen programming tool, the
representation of the expert’s knowledge, and the strategy for inferences. The prototype
should focus on a small set of hypotheses, combine the smallest number of findings
necessary to discriminate among the solutions, and include findings that significantly
improve the quality of decisions (Weiss and Kulikowski 1984, 106). The system will be

developed iteratively, with increasingly sharper and deeper understanding of the expertise.

A large expert system project should be managed as any other large software
project, incorporating modularity, top-down design, documentation, and accountability.
An obvious observation is that object-oriented systems are more modular and therefore
more conducive to top-down design.

Most expert system implementations for engineering applications integrate expert
system techniques with procedural code, supported by hybrid tools. Links to appropriate
software for computations, database management, spreadsheet analysis, and other existing
software tools, enhance the functionality of the system, and reduce the development time.

The user interfaces should receive particular attention, and will require about half
of the development time. Features that are available in some tools are windows, gauges,

menus, displays, mouse sensitive screen regions, and natural language interfaces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AR ESE R S E R A U R 1R B TN WS B A (R By

28

Different user interfaces for various levels of users, from novice to expert, will augment the
usability and acceptability of the system.

An important aspect in developing an expert system is involvement of both the
expert and the user. The expert needs to be willing, and the user must be involved in the
development. The system must be reviewed with both the expert and the user; they also
must be involved in testing and refining the system.

Maintenance of the system will be required. When an expert system stops
evolving, the effectiveness of the system begins to decline, since the nature of most
problems solved with expert systems changes over time.

VALIDATING THE SYSTEM

Validating an expert system typically invclves running test cases and comparing the
results against known results or expert opinions. The expert(s) contributing to the expert
system knowledge base is a valuable resource for evaluating the tool. However, avoid
validating the system against the expert, or test cases, that assisted in the development of
the system since this may not identify problems or inconsistencies that were not considered
during the development of the system.

Validation methods can be either qualitative or quantitative. Some qualitative
methods are: predictive validation, field tests, subsystem validation, sensitivity analysis,
visual interaction; quantitative methods include statistical tests and consistency measures.
(O’Keefe, Balci, and Smith 1987, 85 - 88) The acceptable performance determined by
either method will not be a binary value (yes or no), but will be a range of values.

SUMMARY

The key to successfully implementing an expert system is the knowledge engineer.
The knowledge engineer must be able to work with the expert to formalize the knowledge

and inference strategies. The knowledge engineer must also be familiar with the available
tools in order to effectively develop the representation schemes for the knowledge and to
implement the system. In order to implement a viable expert system, the knowledge

engineer must be able to obtain the support of the expert and the potential users.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FNESRIZEAURIRGRINE BRI YT R R mssaoaume—m

CHAPTER 4
EXPERT SYSTEMS IN ENGINEERING

Problem solving tasks in engineering mainly involve planning and design (or
formation type problems). Early expert systems were applied to derivation problems,
problems such as medical diagnosis and molecular structure interpretation. Many systems
have been developed to monitor and control manufacturing and chemical processing, which
are also derivation problems (Maus and Keyes 1991). However, few systems exist for
design applications.

Two characteristics separate engineering problem solving from tasks addressed by
the early systems. The first is the diversity of the knowledge, a combination of engineering
models and scientific principles, information about materials and specifications, and
heuristic information. A variety of specialized knowledge representations is needed to
depict this diverse knowledge. The second characteristic is the complexity of engineering
systems, generally physical systems with many interconnected components.

PROBLEM SOLVING

Algorithmic solutions are applied to well-structured problems. Newell (1969, 365)

defines a well-structured problem as one that satisfies the criteria:

* It can be described in terms of numerical variables, scalar and vector quantities.
* The goals to be attained can be specified in terms of a well-defined objective
function.

* There exist computational routines (algorithms) that permit the solution to be
found and stated in actual numerical terms.

On the other hand, knowledge-based expert systems are well suited to ill-siructured
problems in a complex domain. Noble (1979, 27) suggests that ill-structured problems can
be characterized by some or all of the following: complex, dynamic, ill-defined, political,

interactive, uncontroliable, and most importantly, unpredictable.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Many engineering problems are not amenable to algorithmic solutions; they rely on
judgment and experience. The problem-solving process invelves skiliful manipulation of
large quantities of knowledge, assumptions, and hypotheses, in a trial and error manner,
revising until an acceptable solution is found. These problems are amenabie to expert
system solutions.

DESIGN METHODOLOGY

Design is a creative process, involving multiple solutions. It is empirical, intuitive,
approximate, and most importantly, requires expertise. It also involves quantitative
analysis. Several steps in the design process have been identified (Hubka 1982, 62; Pahl
and Beitz 1984, 38 - 40; Ullman 1992, 89 - 96) and are illustrated in Figure 4.1.

SPECIFICATIONS

‘ PRODUCT DESIGN

! GENERATE |

_H EVALUATE
' i

Iteration

PRODUCTION

Figure 4.1. Design Process: An Iterative Model

7 ‘ VWUBSHBAELSIRAB IS B AT RIS TTEI0 B PARMODS B s sem==mmrrmm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- S UARSEIERHEIAN RS 1 i1 Ih] MY R S 1R R Ho Sl Al e

31

SPECIFICATIONS. The first step in design is to transform the problem into 2
well-formed set of design specifications, which are the primary communication tool and
control mechanisms for engineering design. The initial customer requirements are often ill-
defined, imprecise, incomplete, and may even contain conflicting information. They need
to be molded into a precise, and quantitative, set of design specifications for an ideal
description. This description will be used to compare all potential, or conceptual, designs
in order to discard inappropriate solutions.

CONCEPTUAL DESIGN. In the conceptual design phase, the product is viewed
as a whole, from a functional approach. The individual assemblies and components are
treated as black boxes, and are described by their functional capabilities -- or what the
product does, not by their structural composition -- or how the components work. The
conceptual design should identify manageable subsystems to be designed by further
refinements.

Creativity is important in generating conceptual designs. Equally important, is the
generation of many potential designs. Often a designer will focus on an initial solution,
with the high probability that better solutions to the design problem are neglected. The
designer must avoid this tendency, as well as the tendency to dismiss unlikely solutions
before they have been developed to an extent that can by judged against the specification for
the ideal design. The creative process is based on synthesizing personal experience or the
experience of outside experts.

Several strategies which can be implemented as CAE tools are used to generate
conceptual designs. One strategy involves redesigning or modifying an existing product to
meet the new specifications. Another strategy uses existing components and develops new
configurations to satisfy the design requirements. Parametric designs are often used by
generating conceptual designs using alternate values for the design variables (or
parameters).

The conceptual designs are evaluated by comparing the designs to the specifications
developed during the first phase of the design process, and then judging the feasibility of

each design. This is often accomplished by a rough analysis or by using empirical rules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W EA PR R B R 13848, 8 121 24 I KNI TEIE I PUTION 3118 na wee

a0

32

The designs should also be assessed for their technological readiness. Generating and
evaluating conceptual designs is an iterative process, and should be encouraged at this
phase. It is much less expensive to iterate a conceptual design than a product design.

PRODUCT DESIGN. The conceptual design is refined in the product design phase
to a fully developed, optimal design. Each component is detailed; and choices for
materials, processes and vendors are finalized. A recent trend is to design the product
concurrently with the manufacturing process, by a team composed of the designers and
manufacturing and materials specialists.

As the product designs are generated, they are evaluated for both performance and
cost, and for manufacturability (including the ease of assembly) and maintainability.
Experimental and analytical models are used to judge the performance of the design; many
automated procedures exist to assist in evaluating the design. Analysis procedures produce
only quantitative information about the design; they do not make judgments about what the
information means or determine whether the design is good, or how to make it better.

Evaluating the product design may expose limitations in the design that can be
eliminated by modifying the design. Iteratively generating and evaluating product designs
will result in a better product. Sometimes it may be necessary to return to the conceptual
design phase, and generate new possibilities.

The result of the product design is a set of design records: detail and assembly
drawings, bill of materials, assembly information, quality control and quality assurance,
and instructions for installation, operation, maintenance, and retirement. These records are
used to convey the product to manufacturing and to eventually communicate with the
customer.

The design process progresses from a general overview of a problem solution to
increasingly detailed components, or subtasks, of the problem solution. Design is a highly
iterative process of interconnected steps, iterating between synthesis of problem solutions
and analysis of those solutions. Specifications may need to be relaxed to accomplish the
design; conceptual design models are modified and reevaluated until an optimum design is

found. New information is often incorporated after the design process has begun, or new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THRIREENIFIR S R E RINIE. & X2 ¥ R v gaenad

33

insights are gained that impact the design. The problem is decomposed into subproblems,
then redecomposed; specified and respecified; designed and redesigned.

Hoeltzel and Chieng (1989, 48 - 50) postulate the following systematic design

methodology:

» Design procedures propagate gradually from a qualitative domain to a quantitative
domain, from synthesis to analysis, estimation to evaluation. Thus, design
procedures are generally hierarchical.

* The design process can be separated into a generic portion and a domain-specific
portion, and may be further subdivided into a creative design portion and a routine
design portion, depending on the coupling of the design variables.

* An abstract design optimization process, based on a hierarchical data structure and

monotonic reasoning, is guaranteed to converge during the search for the optimum
solution.

Mechanical design involves additional aspects, not necessarily found in other
engineering design processes: material selection, sensitivity to manufacturing concerns and
processes, complex three-dimensional geometries, and non-modularity.

EXPERT SYSTEMS IN THE DESIGN DOMAIN

Knowledge-based expert systems for mechanical engineering design have been
implemented using several approaches. J. R. Dixon and the Mechanical Design
Automation Laboratory at the University of Massachusetts use a design-evaluate-redesign
approach (Dixon, Simmons, and Cohen 1984). A second approach, used by David Brown
at Worcester Polytechnic Institute and B. Chandrasekaran at The Ohio State University,
involves design refinement with plan selection and redesign (1984). Another approach,
transformation, is proposed by A. S. Kott of the Camegie Group Inc. and J. H. May at the
University of Pittsburgh (1989).

DESIGN - EVALUATE - REDESIGN. This architecture is applied to the design of
component parts and small systems where the initial design and each subsequent redesign
iteration is a complete design. An initial design is evaluated or analyzed to determine its
expected performance in terms of performance parameters that may include cost, function,

and manufacturability issues. A decision is made as to the design’s acceptability. If the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T NWIEER AN AA M AN EEAEUE N ERN N LALLM mmeeemem— T

34

design is acceptable, the task is complete. If not, the design is redesigned and reevaluated,
iteratively. Redesign can ultimately fail; then the process returns to the initial step to relax
the requirements. In redesign the analysis results and the reasons for unacceptability are
used heuristically to guide the changes.

The four distinct functions in this methodology -- initial design, evaluation,
acceptability determination, and redesign -- are each represented by a separate knowledge
source. Two other functions -- control and the user interface -- are also represented in
separate knowledge sources.

DESIGN REFINEMENT WITH PLAN SELECTION / REDESIGN. Brown and
Chandrasekaran separate design into three classes of increasing difficulty and complexity:

» routine design with known design plans

¢ known components but design plans unavailable

¢ unknown components.

Routine design is accomplished by decomposing the known design plan. Complexity is
still a factor in routine design and is related to the number of components and sub-
components and the variety of combinations of the design goals. The knowledge sources
are identified since the components and subcomponents are known.

The knowledge forms into clusters; it is not a large unstructured collection of rules,
all having equal potential for use. The knowledge is a hierarchical organization of:

e conceptual specialists, each with different expertise and a set of plans

* plans, sequence of calls to tasks

e tasks, series of steps

* steps, which make the design decisions.

The system is divided into four stages: requirements validation; rough-design for
determining the most important values (e.g., material), thus pruning the design space;
design; and redesign by relaxing the requirements with user interaction. Each stage
involves plan selection and design refinement.

The interaction between the subsystems is weak, but it is not negligible. Thus

routine design is almost decomposable, but still requires communication between the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s ‘ ARSI DG NN M SR LS8 8 BAIOR 527 R0, 2 3009 sea ===

35

subsystems. Communication between the specialists is through messages across the
hierarchical connections.

Failure handling, when a design doesn’t work, is a modified form of dependency-
directed backtracking controlled by suggestions and failure-handling advice. The user can
be a knowledge source for failure handling, as well as for other stages of the program.

TRANSFORMATION. In the transformational process, each step starts with a
design state and produces another design state of the same degree of completeness. A
portion of the design structure is replaced with a different substructure. This process may
operate on more than one component at a time and is used effectively when the design
cannot be easily decomposed. An appropriate application is a design that has tightly
coupled subcomponents.

IMPLEMENTATION ISSUES. Expert systems developed for design applications
must address the design methodology. They require the integration of large amounts of
intuitive knowledge, judgment, and experience, as well as quantitative tools. They involve
cooperative problem-solving with multiple experts, which can be a set of logically or
physically disjoint knowledge sources communicating through a blackboard. Complex
design is characterized by a hierarchical model; the design proceeds from a simple,
approximate model to increasing complexity, realism, and reliability. The hierarchy of
abstraction is from global to detailed design. The consequences of design decisions cannot
be predicted until the design has progressed considerably. Redesign is inevitable, thus
scheduling of subproblems for redesign is a concern.

Spatial relationships are necessary parameters for the designer and are not easily
approximated symbolically or qualitatively. Hybrid systems can effectively bridge between
the symbolic and numerical domains. Other implementation considerations are associated
with the user interface. The interface should differentiate between novice and expert users
and provide an effective means of communication with the user. (Allen et al. 1987, 98)
EXPERT SYSTEM IMPLEMENTATIONS: DESIGN APPLICATIONS

A discussion of expert systems used in selected design tasks illustrates the current

state of knowledge-based tools in engineering design applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o lvﬂmmﬂﬁﬁﬁﬂ!lfﬂiﬂm BAEDR T 0230 { FASY 31 AOT EACKR @ L5amam pees Smomm oo

36
TR RES.

SACON is a consultant for structural engineers on the use of the finite element
analysis program MARC. SACON identifies the analysis class of the problem and
recommends specific features of the MARC program to activate. SACON is a backward
chaining, rule-based system implemented in EMYCIN. (Bennett and Engelmore 1979)

HI-RISE addresses the preliminary structural design of buildings. HI-RISE
configures and evaluates several alternative structural systems for a given three-dimensional
grid. A combination of frame-based and rule-based reasoning is implemented in PSRL, a
language developed at Carnegie-Mellon University. Rules in PSRL are expressed in an
extension of the OPSS5 language syntax; a LISP-based declarative formalism is used to
represent the structured objects. HI-RISE is an early application exploring the use of
expert systems for design problems. (Maher and Fenves 1984)

Composite Design Assistant coordinates access to a database manager for material
properties and to analysis codes for design of sandwich panels. CDA is written in
PROLOG, while the interfaces to the databases and analysis codes are written in
FORTRAN. (Zumsteg, Pecora, and Pecora 1985)

BEADS, a prototype Building Envelope Analysis and Design System, assists the
designer in selecting materials and constructional systems. A knowledge base containing
information on performance requirements and constraints from building codes is interfaced
with a database of material properties. BEADS is implemented as a framed-based system
using Knowledge Craft. (Fazio, Bedard, and Gowri 1989)

FRAMEX is an integrated system for simulating the design process of rectangular
multistory steel buildings, using numerical processing, symbolic processing, and database
management. FRAMEX is implemented as a rule-based system, using Personal Consultant
Plus, with graphical user interfaces and interfaces to analysis software written in Turbo
Pascal. (Adeli and Chen 1989)

IBDE, Integrated Building Design Environment, is a prototype environment of
processes and information flows for the vertical integration of architectural design,

structural design and analysis, and construction planning. The processes are knowledge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T HRR LRSI M 16 3318 3 B R R pmmrem—

37

based expert systems using declarative or rule-based knowledge representations:
architecturai planner ARCHPLAN, space planner for service core CORE, structural system
configurer STRYPES, structural layout and approximate analysis system STANLAY,
component designer SPEX, foundation designer FOOTER, and construction planner
CONSTRUCTION PLANEX. A blackboard architecture is used to coordinate
communication between the processes, and the global information is organized in an object
oriented programming language. (Fenves et al. 1990)

EXPERT-SEISD is an object based rule system for the preliminary design of beam
and plate components. The system consists of a design module and a knowledge
acquisition module for updating and/or expansion of the knowledge base and database.
EXPERT-SEISD is implemented in GCLISP, a PC version of Common LISP developed by
Gold Hill Computers, Inc. (Umaratiya and Joshi 1992)

COKE, Construction Knowledge Expert, provides feedback on the constructability
of the structural design of a reinforced concrete building structure. COKE reasons about
the geometrical and topological model of a designed facility and provides construction input
for the structure. COKE incorporates the data from AUTOCAD with Kappa PC to build a
symbolic model of the project’s structure. The system links the requirements of
construction methods with structural design decisions to determine the constructability of a
design. (Fischer 1993)

STANDARDS.

SPECON aids the structural engineer in checking structural steel elements for
conformance with the AISC Steel Design Specification. The essential difference between
SPECON and other expert systems is the flexibility provided to the user to alter numerical
values of design parameters until the hypothesis is satisfied. An explanation module
informs the user how certain deductions were made or why a particular question was
asked. SPECON is a backward chaining production system, implemented in LISP and
OPSS5. (Sriram, Maher, and Fenves 1985, 5-6)

SICAD is a rule-based approach for checking designed components for

conformance with applicable standards. SICAD integrates conformance checking with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

procedural programs for structural analysis, database management, standards, and
synthesis components. SICAD, a hybrid system incorporating a blackboard architecture, is
implemented in POLO, a FORTRAN based language translation facility and comprehensive
engineering database manager with an associated analysis package. (Lopez, Elam, and
Reed 1989)

HyperLRFD is a prototype system developed to evaluate the feasibility and
practicality of a unified Object-Logic model for the representation of design codes and the
processing of design standards. HyperLRFD incorporates parts of the AISC Load and
Resistance Factor Design (LRFD) specification and performs conformance checking and
component design. The organizational aspects of the design standards are represented with
an object-oriented paradigm while the reasoning mechanisms for the design are
implemented in logic programming. HyperLRFD is implemented in PROLOG-++ (object-
oriented extension of PROLOG) and uses HyperCard (Hypertext software for Macintosh
computers) to implement the user interface; HyperLRFD interfaces to an Oracle relational
database system and Excel spreadsheet software. (Yabuki and Law 1993).

MECHANICAL.

VEXPERT designs standard V-belt dnves. VEXPERT was implemented to
demonstrate the design-evaluate-redesign architecture. A design algorithm is used to obtain
an initial design from problem specifications. Utility-decision algorithms are used for
analysis and acceptability. VEXPERT is written in LISP, uses OPS5 production rules, and
a blackboard implementation scheme. (Dixon and Simmons 1984)

XENIF designs aluminum extruded rectangular heat fin arrays for natural
convection heat transfer. XENIF was implemented to demonstrate the design-evaluate-
redesign architecture, based on dependencies, or relationships, between design goals and
design variables. XENIF is written in DELPHI, a General Electric proprietary expert

: system language, and uses rules written in LISP. It uses FORTRAN utilities for analysis.
(Kulkarni et al. 1985)

AIR-CYL is an application of a general purpose design expert system, designing air

cylinders for a given set of requirements. It was implemented as a demonstration of a

UEASPSTRBIRER NIV D RS I

s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIRNRIE

C BRI R G E I3 ERAG B RSR R

39

hierarchically structured system with plan selection for routine design. AIR-CYL was
developed using the task-level DSPL language, Design Specialists and Plans Language,
which is based on a LISP dialect. (Brown and Chandrasekaran 1986)

PRIDE designs paper-handling systems inside copiers and duplicators, organizing
the knowledge as design plans. The plans decompose the problem into simpler parts. A
problem solver executes these plans and uses dependency-directed backtracking with an
advice mechanism to handle constraint failures. (Mittal, Dym, and Morjaria 1986)

DPMED selects design parameters for mechanical primitives such as gear-pairs, v-
belts, bearings and shafts. DPMED incorporates rules for selecting materials and critical
design criteria, and a database of standard values of design parameters. DPMED uses
Refinement + Constraint Propagation + Parameter Selection. As each sub-module is
designed, constraints are propagated to the other sub-modules to guide their design.
DPMED was implemented in KEE, an object oriented environment. (Ramachandran,
Shah, and Langrana 1988)

A prototype expert system for the gating design of an investment casting process
incorporates a “design-with-features’” approach. The prototype uses an object oriented
structure, implemented in KEE, to manipulate features for geometric reasoning and
interfaces to the CAEDS solid modeler. Communication between the systems is through
Common LISP. (Chung et al. 1988)

XCUT is a feature language which generates process plans for the production of
machines parts. XCUT couples rule-based and object-oriented programming techniques
for automatic classification of machine features. (Hummel 1989)

MEFDES, Modular Element Fixture Design Expert System, interfaces a 3-D CAD
system (ME30) with a feature recognizer, which analyzes the part geometry and extracts
machining features, to determine fixture setups for prismatic parts. The rule / frame-based
system is implemented with Nexpert Object, an expert system shell. (kumar, Nee, and
Prombanpong 1992)

An integrated system combining conventional expert system methodology with

operations research decision-analysis techniques has been applied to material selection in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SRR USRS E L LERLIT M RBEATA KL SaRB M rarum n

40

automobile bumpers by Thurston (1993). The heuristic rules are separated into two
categories: subjective rules, which embed assumptions about balancing confliciing design
objectives and user preferences, and objective rules, comprised of factual information and
which do not typically vary between designers. The objective rule base is used to identify a
set of design alternatives that satisfy minimum performance requirements by eliminating
those alternatives not falling within specified design parameters and configuration
constraints. A user manipulated utility function, incorporating multiattribute utility
analysis, then evaluates and ranks each alternative. The knowledge base was constructed
in OPSS3, and the utility function expert system module was written in Common LISP.

A system for parametric design and analysis of a family of parts with a specific
focus on gas turbine nozzles has been developed with Smart Model, a knowledge-based
engineering system from ICAD, and integrated with software utilities developed by General
Electric. These utilities include a geometric modeling utility, TAGUS; an automatic 2-D
mesh generator, QUADTREE; and a lofting type mesh generator for extruded components,
EXTREME. The Smart Model knowledge-based system uses an object-oriented
framework to represent the design and manufacturing information as part of the complete
product definition of parts, assemblies, and systems. (Saxena and Irani 1993)

ALPRO incorporates design compatibility analysis, which ranks manufacturing
processes based on feasibility for the basic geometry, material, and production
requirements of components, with normalized cost analysis. The prototype addresses
aluminum processes: extrusion, sheet forming, forging, die casting, permanent mold
casting, sand casting; coupled with the secondary processes of bending and machining. An
object oriented representation is used for the capability data; the program uses HyperCard
as a front-end, PROLOG for logic-based analysis, and Excel for cost calculations. (Yuet
al. 1993)

INJECTION MOLDING.

IMPARD evaluates designs of injection molded parts based on manufacturability
criteria such as wall thickness, corner radii, boss and hole dimensions, melt flow length,

taper angles, and draft angles. IMPARD interfaces to the GeoMod database, a solid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T RIRMIIGANGIICE B M N I IUE .- B $R1Aa0 B mela s mess w0

modeler developed by SDRC. Primitive features are input by the designer and used for
visual displays and design evaluations (Yaghul et al. 1985)

A prototype knowledge-based synthesis system for injection molding is presented
by Kim and Suh (1986). It combines a rule-based system with a cavity filling simulation
program. Theoretical models predict the moldability of the design and the mechanical
performance of the molded part. The user interacts with the design loop to synthesize
designs in terms of gate location and molding conditions. The design is evaluated for
moldability and strength. The prototype was implemented using EXPERT.

GERES is an expert system for selecting injection-molded resins based on pre-
desiga application information. GERES requests nontechnical, symbolic design attributes,
prioritized by the user, to guide the material search. The program selects technically
feasible resins and ranks the selections by cost; the program also “relaxes” non-critical
needs to find economically feasible alternatives. GERES is implemented in Delphi, a GE
proprietary product, and uses rules, object-attributes-value triples, and LISP procedures.
(Nielsen, Dixon, and Simmons 1986)

AMDS, Automated Mold Design System, integrates the Moldflow analysis
program, features database, and iterative redesign to automate the design of injection
molds. The features database represents the part and the feed system. The quality of the
design is based on performance parameters. (Irani, Kim, and Dixon 1989)

IMCE, Injection Molding Cooling Expert, is a hybrid expert system for the design
of the cooling system for injection molding. IMCE uses the heuristic-depth-first searching
algorithm for redesign. An interactive graphics program is used to create/edit the two-
dimensional geometric model, and the numerical model. The cooling process for the
numerical model is analyzed. Databases contain material properties, cooling rules, and data
for the analysis programs. The user can interact with the redesign stage to modify the
design variables. IMCE was developed in Common LISP under the expert system shell,
KEE. (Lee and Kwon 1989)

Dennis Pearce developed an expert system to estimate the cost and configuration of

injection molds for plastic parts. (1989)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NIRERM G HAAR B 12 T IR I R QIR VORREERTEEm T

42

Ishii, Hornberger, and Liou (1989) have developed an expert system prototype to
evaluate a candidate design using design compatibility analysis among user requirements,
process constraints, and the part design. Suggestions for improving the design are
presented both graphically and in text format. The prototype uses DAISIE (see the next
section) as a platform for the compatibility analysis and is implemented in PROLOG with a
HyperCard user interface.

GENERAL PURPOSE.

GEPSE is a General Engineering Problem Solving Environment. GEPSE is an
object network language that simplifies the construction of object and rule bases. Other
features are function libraries, user interface packages, and a facility for meta-level control.
GEPSE is a forward chaining system, and is implemented in C. (Chehayeb et al. 1985)

KADBASE is a knowledge-aided database management system prototype. Itisa
flexible interface for multiple databases and knowledge-based systems to communicate as
independent, self-descriptive components within a loosely coupled distributed system.
KADBASE provides the mechanism to develop a distributed, integrated CAD system; it
uses a frame representation scheme and forward and backward chaining inferencing in a
blackboard model. KADBASE is implemented in Franz LISP. (Rehak and Howard 1985)

DOMINIC I performs design by iterative redesign in a domain independent
environment, using a hill climbing algorithm. The class of redesign problems for
DOMINIC I are those that are intellectually manageable and solvable without sub-division
into smaller parts. DOMINIC I contains a knowledge acquisition module and is
implemented in Common LISP. (Dixon et al. 1936)

DAISIE, Designer’s Aid for Simultaneous Engineering, uses design compatibility
analysis to evaluate a conceptual mechanical design for compatibility with various life-cycle
issues. The knowledge bases represent issues such as functionality, esthetics, and
manufacturability, important in mechanical design. The system evaluates the design while
the designer makes tradeoffs and the final decisions based on suggestions from the system.
DAISIE is a shell for mechanical design and is implemented in an object oriented

environment using PROLOG and HyperCard for the user interface. (Adler and Ishii 1989)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

QUNEZBEAKBARNKR LI 8 S3IER KRG8 2 RIS

)

43

IDS, Intelligent Design System, is an integrated design for manufacture
environment that advises the user on the feasibility of a ”design-with-features™ approach.
IDS is based on a CAD system and is integrated with an expert system and a database
management system which uses three distinct classifications of information: object-
oriented CAD data, a design catalog, and a knowledge base of rules and heuristics. IDS is
implemented in the C programming language and interfaces to a CLIPS expert system shell
and an Oracle database management system. The interfaces are written in the C
programming language. (Miller and Colton 1992)

IES, Integrated Engineering Shell, is a framed-based expert system shell
incorporating a blackboard architecture and a database management system. IES provides
backward chaining, forward chaining, and hybrid chaining inferencing strategies. IES is
implemented in the C programming language. (Sakthivel and Kalyanaraman 1993)

ACL, Agent Communication Language, is an agent-based framework for the
development of integrated facility engineering environments. The design agents, various
software programs for design and planning systems, communicate design information to
facilitators in a federation architecture having no central database. Messages, based on
first-order predicate logic, are used to communicate information. (Khedro, Genesereth,
and Teicholz 1993)

KASE, Knowledge Assisted Software Engineering, is a set of tools for software
analysts and designers at the architecture level. KASE captures the various knowledge
needed for design and applies the knowledge to aid knowledge engineers in automating
design activities. KASE is implemented in a blackboard architecture for a class of tracking
problems, in which the task is to identify and track objects in space based on signal data.
(Nii 1994)

RESEARCH AREAS

The current expert system paradigm does not suffice for real world engineering
problems. The early expert system implementations for derivation problems are not
directly extensible to formation problems. Several systems have been developed for design

problems; however, these implementations have also exposed limitations in the current

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 TR B

THINIRFS AN A B IRY FITOIE § BRI P ERNR

methodologies. Some specific areas that need further research are (Lu 1986, 14 - 18):

° knowledge acquisition

e inductive reasoning

* limited, narrow problem domains

* integrating heuristic and deterministic knowledge (engineering models, physical

principles, and governing equations)
* interactive user interfaces
* use of system shells for domain-specific, task-independent applications (design
shell, diagnosis shell, planning shell, etc.)

This research focuses on the last three areas.
SUMMARY

Early expert systems addressed derivation problems, i.e., they look for a path that
leads to a specified goal, which exists in the knowledge base. The expert systems
discussed in the previous section differ from these early systems since they address
engineering design problems, problems that require a diversity of knowledge bases for
complex engineering systems, where the solution is not already in the knowledge base.
However, most of these expert systems are either implemented in programming languages,
requiring many man-months of development effort, or in programming environments
requiring many months of training before a deveioper gains the requisite knowledge to use
the tool effectively. This research is cognizant of the limitations of these implementations,
particularly those most closely related, and investigates the use of expert system shells for
design problems.

Expert systems for engineering design applications require an integration of
heuristic and deterministic knowledge. They also involve cooperative problem solving
using multiple experts. Hybrid systems have proven to be valuable tools in implementing

these engineering systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 NIREC oo SN RIA IR BEEIYE) SATEGE 372 BeRi pNy

CHAPTER 5
PROTOTYPE DEVELOPMENT

The diversity of the knowledge in engineering problem solving and the complexity
of engineering systems lead to many difficulties in applying expert systems to design
problems. The knowledge is a combination of heuristic information (design rules and
guidelines), and deterministic knowledge (engineering models, scientific principles,
governing equations, information about materials and specifications, and analysis data from
existing algorithms). The knowledge is provided by multiple sources, requiring a variety
of specialized knowledge representations, which need to be integrated for fully functioning
systems.

Tools currently exist that are appropriate for developing expert systems for complex
tasks such as engineering design. Expert system shells, in particular, offer rich
development environments with interfaces to programming languages, access to databases,
and graphical capabilities to assist in developing user interfaces. In order to test the
capabilities of various KBES shells, a prototype system should be constructed to categorize
the knowledge used in design processes and develop representations for that knowledge.
The prototype should integrate the knowledge sources with existing databases and analysis
software and demonstrate graphical user interfaces for explanation and knowledge
acquisition facilities, as well as interactive capabilities for user participation in the design
process.

Designing an injection molded plastic part is a representative engineering design
problem; a subproblem, the design of a cantilever snap joint to join two components, was
chosen for a detaiied prototype implementation. The knowledge structures required for a
snap joint are typical of the structures in a general engineering design problem; the
prototype involves a materials database, design specifications, equations for analyzing the

design, and heuristics or rules of thumb.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CUNRGRIMRIHNA BT RITAIS N ETENg

46
CHOOSING AN EXPERT SYSTEM BUILDING TOOL

A range of tools with varying levels of support for knowledge acquisition,
explanation facilities, (interactive) graphics, uncertainty management, and other features
influencing the ease of use of the expert system are available to the expert system
developer. The expert systems that have been developed for design problems have
generally been implemented using programming languages or programming environments.
These tools are relatively difficult to use and are practically useless to the typical engineer
with limited programming skills. Consequently, the use of these tools is limited to
knowledge engineers having a thorough understanding of knowledge representation
schemes and inference mechanisms.

Expert system shells, at the high end of the available tools, facilitate rapid
development of expert systems because they incorporate specific knowledge representation
schemes, inference mechanisms, and control. Since they often provide interfaces to
existing databases and to procedural languages, the developer can interface the expert
system with solid modeling systems and a multitude of existing analysis software (such as
finite element modeling). Expert system shells typically offer a graphical interface and an
explanation facility to encourage user acceptance. Another useful feature to look for in
expert system shells is a knowledge acquisition facility to help ensure that the expert system
will continue to evolve and will continue to be used. Most shells provide an interactive
interface which allows the user to participate in the process, thus serving experts as a
design aid and novices as a tutor.

Several shells currently exist that are appropriate for developing expert systems for
complex tasks such as engineering design: Kappa PC, Level5 Object, Concept Modeller,
G2, and Smart Model.

Kappa PC (IntelliCorp $3500) offers object-oriented capabilities coupled with a
forward and backward chaining rule system, procedural language programming, dynamic
presentation graphics, graphical debugging tools, and intelligent links to other applications
and databases. Kappa PC is based on KEE.

Level5 Obiect (Information Builders Inc. $995) is a hybrid tool which features

object-oriented capabilities and includes such functions as forward and backward chaining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ermﬂﬂﬂﬂﬁﬂﬂﬂ% B 08 DR OV B SRA RN ISAE R1D

47
inference engines, relational database models, CASE facilities, a graphical toolbox for
building user interfaces, and graphical debugging tools.

Concept Modeller (Wisdom Systems, $65.000) creates 3-D solid models using
parametric design capabilities and maintains engineering and manufacturing information,
such as weight, cost, list price, and material type, in object-oriented databases to provide
part summaries, bill-of-material reports, and data for finite element analysis programs.

G2 (Gensym Corp., $10,000 - $40,000+) provides an applications environment for
real time processes using a frame-based knowledge representation system with extensions
for object-oriented programming. Other features of G2 include interactive windows,
graphics, and animation; a structured English editor; functions and procedures; and a
dynamic simulator.

Smart Model (ICAD Inc., $35,000 - $150,000) incorporates rules to extend the
traditional CAD programs based on interactive geometric modeling systems. These rules
are used to create a representation of a part that includes product structure and dependence
on other parts; physical and geometric specifications; material, manufacturing and cost
constraints; lead times; and manufacturing process plans. The systemn also includes a full-
surface modeling system and features for automatically performing and displaying design
iterations, relating the design knowledge base to manufacturing or processing knowledge
bases, and transferring data from other CAD systems.

All five tools offer rich development environments with interfaces to programming
languages, access to databases, and graphical capabilities to assist in developing user
interfaces. The first two -- Kappa PC and LevelS Objéct -- are PC tools, while the other
three are workstation tools. Kappa PC is a promising tool, principally because the
relatively low cost makes the system accessible for most implementations and it offers a
migration path to the workstation environment. Other important advantages are the object-
oriented data representation scheme, C programming capabilities, and a large inventory of
graphical tools. Both forward and backward reasoning are available, using either depth-
first, breadth-first, or best-first search algorithms. IntelliCorp also offers a similar, but not
compatible, workstation product -- ProKappa. The object portions cf the knowledge can

be ported with minimal effort, but the rules and other interface portions require conversion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RIKEHIERH A IR RIARIE U X128 10155 2 508

sy

48

from one syntax to another. Level5 Object, available at an even lower cost, was conceived
and implemented as a procedure-based tocl for database applications. Since the object-
oriented features are add-ons, and are not an integral part of the shell, Level5 Object is not
as viable as Kappa PC for object-oriented applications. Kappa PC was evaluated for its
ease of use in design applications, its capabilities for interfacing to existing software and
databases, and the tools for developing sophisticated user interfaces.

KAPPA PC DEVELOPERS ENVIRONMENT

Kappa PC offers the developer a rich environment of development tools for
viewing and modifying elements, building customized displays, and debugging the expert
system. These tools include graphical representations of the knowledge elements, editors
and syntax checkers, and functions to read and write ASCII files so the developer can
access the myriad of software available in DOS and WINDOWS environments.

Among the development tools are the knowledge editors used to define, examine,
and modify the seven knowledge elements -- classes, instances, slots, methods, functions,
rules, and goals. Kappa PC also provides graphical presentation tools, from the
Activelmages™ package, to facilitate user interface development and enhance the interface
features. The tools (Figure 5.1) used to display static information and current information
stored in single and multiple valued slots include options for text, transcripts or boxed

information, line drawings, bitmap diagrams, buttons, state boxes, meters, sliders, user-

Figure 5.1. Graphical Presentation Tools

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UABRITGHAS BRI 121K KIFSC R R IR paaRams spumeme—

49
edited text, and line plots. Another tool, dialog boxes, provide menus to direct user
interactions, post messages, and forms to enter information into knowledge bases.

An alternative development environment to the knowledge editors is the KAL
interpreter, a mechanism for testing and executing expressions written in Kappa PC’s
programming language KAL. The interpreter includes a library of 240 built-in functions to
create, access, and modify knowledge elements; evaluate math, logical, and string
expressions; control blocks of expressions; manipulate lists, files, databases, and
spreadsheets; control knowledge processing; and control the end-user graphical screen
interface. User defined functions, written in C to create new functionality, control
processing, and combine individual actions, can be tested in the interpreter and added to the
knowledge base as functions.

Several tools provide fairly extensive debugging capabilities: an object browser,
rule relations browser, an inference browser, and rule tracing. The object browser
provides a graphical view of the hierarchy of classes, instances, and subclasses and allows
the developer to modify objects and their relationships. Instances and subclasses can be
hidden to compact the graphical representation. The rule relations browser graphically
displays the linking relationships between premises and conclusions of rules. The rule
tracing is a dynamic text description of the inference engine’s progress; it lists the rules that
the inference engine invokes and the changes to selected slots in the knowledge base due to
the reasoning. Thus the developer can see how the system generates new conclusions and
can trace the source of errors in the knowledge base. The inference browser graphically
depicts the reasoning given by rule tracing.

APPLICATION: CANTILEVER SNAP JOINTS

Snap joints are a simple, economical, and rapid way of joining two different
components. All snap joints have a protruding part of one component, e.g., hook, stud or
bead, which is deflected briefly during the joining operation and caiches in a depression
(undercut) in the mating component (Figure 5.2). After the joining operation, the joint
should return to a stress-free condition. The joint may be separable or inseparable
depending on the shape of the undercut. The force required to separate the components

varies greatly according to the design. Two important factors to consider in designing snap

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S0

joints are the mechanical load during the assembly operation and the force required for
assembly. (Miles 1992)

NN\

’/// A

V4

b

Cylindrical Interference

Figure 5.2. Representative Snap Joints

A typical cantilever snap joint is illustrated in Figure 5.3. Recommended design
procedures are to vary the finger so either the thickness (h) or width (b) tapers from the
root to the hook. Good results are obtained by reducing the thickness linearly by a factor
of 1/2 from the root to the hook, or by reducing the widih to 1/4 from the root to the hook.
(Reiff 1991, 60)

return angle, ., deflection force, P

/'—Width, b
7 __,-_L assembly force, W

N undercut, y
\ thickness, k

i | length,] —— __ !

lead angle,

N

Figure 5.3. Cantilever Snap Joint Geometry

3 “zmmfmmﬂmﬂmmm'mm 03 IAE K 3TSH 12 FU5 RPSA 28 4 88 o3 morsr S o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ST REHUER AR B E [1H08 KBS By K107 5 RRE Masnmm S s

51

Cantilever snap joints are predominantly loaded in bending. From classical beam
theory, the following equations apply to cantilevered beams with constant, rectangular

cross sections:

Stress: 6=MC where M =Pl

t - _PB
Deflection: y= 351
= h3 =h
I b——l 5 and ¢ 5

For a cantilever snap joint (Figure 5.3), the following governing equations are then

derived from the above equations:

Strain: £= 2 . (ﬂ)
2 12
Deflection Force: P= b?hz - E—Sl-s-
Assembly Force: W= P . (li’;_mm;%)
Where:

€ strain in outer fiber at the root

y deflection or undercut

1 length of cantilever arm

h thickness atroot

b width at root

E, secant modulus

QL static coefficient of friction

o¢ angle of inclination (either lead or return)

The calculated strain is compared to the allowable strain. For amorphous materials
the allowable strain is approximately 70% of the yieid strain; the working value for strain
should be limited to 60% of the allowable strain when the snap joint is to be separated and
reassembled several times (Miles 1992, 12). For example, if the elongation at yield is
6.5%, then the allowable strain is 0.0455 for a single assembly or 0.0273 for multiple

assemblies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l ,‘&I RIS IS 8 SR Errat s

52
KNOWLEDGE REPRESENTATION

A variety of knowledge is required in designing a cantilever snap joint. The
cantilever configuration and geometry must be specified, either from geometrical
constraints of the part or from design specifications and rules. A material must be selected
for the part, and the appropriate material properties must be available to the designer.
Finally, an analysis, using governing equations and material properties, will determine the
structural integrity of the snap joint. Economic factors are generally considered in a design
problem but were not included in the prototype since their categorization is similar to that of
design rules.

OBJECTS.

The knowledge characterizations of an injection molded plastic part can be
effectively represented in an object-oriented environment. In an object-oriented program,
the data is represented by objects typified by two types of information: information
describing the objects (classes, subclasses, and instances and their attributes) and
information specifying what the objects can do (methods). For the prototype design
problem, classes are established for three different knowledge types: materials, features,
and the design solution; Figure 5.4 graphically represents the object hierarchy. In Kappa
PC instances are related to a class by dashed lines; thus, the material class has six
instances. A solid line indicates a relationship between a class and its subclasses; the snap
joint class has three subclasses -- cantilever, torsional, and annular -- providing future

extensions for torsional and annular snap joints.

- BayblendFRt 1435
£+ Calitreson 10
& Magnum 3567
o NopyINT S0
' PulseiiZs
“ Znel107.. Oy

nominal_wall
cantilever
eeture projections snap_ioint—<tors'onal
_.< H

depression ribs annular

Root

Figure 5.4. Object Hierarchy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53
Methods are attached to the classes or instances and associate behaviors with these
objects. Generally algorithmic processes, involving few conditions in a predetermined
series of steps are better suited to implementation as methods than as rules.
A representative sample of the materials and the properties that can be obtained from

the material database is given in Table 5.1.

Table 5.1. Materials

Name: CALIBRE 800-10 MAGNUM 3661 PULSE 1725

Type: polycarbonate resin ABS resin polycarbonate

/ ABS resin

Tensile Stress @ yield (psi): 8,700 5,000 8,400

Comp. Stress @ yield (psi): 14,000 6,900 11,000

Elongation @ yield (%): 6.5 2.3 4.0

Flexural modulus (psi): 360,000 340,000 400,000
Coefficient of Friction:

Plastic to Plastic .55 75 .65

Plastic to Metal .45 .65 .55

Each class, subclass, or instance is characterized by various slots; for example,
each material instance has the following properties: tensile stress, allowable compressive
stress, elongation at yield, flexural modulus, and coefficients of friction for plastic on
plastic or metal. A listing of the classes, instances, and slot values is available in
Appendix A.

METHODS.

The knowledge necessary to design a cantilever snap joint is the analysis

information. In alarge design problem, tools such as finite element analysis are required to

Ll

predict the performance of the design. In a relatively small design problem like a cantilever
snap joint, the beam theory governing equations in the previous section will adequately
predict the cantilever performance. Methods attached to the design solution class use the

governing equations to calculate the strain and the assembly forces (listed in Appendix A).

NiREFHIBEZ/ R N ITEHL Y X0 P ETRI R e

e |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W'l‘l!&.’mmnmmﬂmmm:ammawnmumm.._“—._ -

54
RULES.

Experience with injection molded parts has resulted in a host of design rules
applicable to a variety of situations. These rules guide the material selection and the
specification of features such as draft angies, surface textures, corner radii, and wall
thicknesses, all affecting the moldability of a part, its structural stability and appearance,
manufacturability, and the total production cost. The knowledge for the prototype system
was acquired from multiple “experts” -- design manuals produced by plastics
manufacturers: Borg-Wamer, Dupont, and Miles; and plastics designers: Beall and
Paisulich.

A cantilever snap joint is a projection, and therefore rules pertaining to projections
are appropriate. Some representative rules for projections are:

* length should be less than three times the nominal wall, to avoid molding
problems

thickness should be within 50% to 70% of the nominal wall, to avoid sink marks
ratio of length to thickness should be less than 10, to avoid buckling

¢ ratio of thickness to the width should be 1:4, slender beam theory assumption

* deflection angle should be less than 10°, slender beam theory assumption

and rules specific to cantilever snap joints are:

* ratio of length to thickness is 5.4:1, determined from a random sampling of latch
geomeiries

» undercut should be less than one-half the length

* the lead angle should be between 10° and 35°

* the return angle should be greater than the lead angle

» for a self-locking joint, the return angle should be greater than (90° - tan-1p)

+ if the strain is excessive, reduce the undercut or increase the length

The first seven are implemented as methods (listed in Appendix A), attached to the
cantilever class, to calculate the geometrical data and assign the values to the slots -- length,
thickness, width, and undercut. (The other slot values are specified through the user
interface.) The remaining logical relationships are implemented as IF-THEN rules.

Pseudocode examples are given below, and the complete rules are listed in Appendix A.

If (£ > allowable strain)
then reduce undercut and recalculate design values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

If (e > allowable strain)

then increase cantilever length and recalculate design values.
If (W > allowable assembly force)

then increase cantilever length and recaiculate design values.
If (W > allowable assembly force)
then reduce angle and recalculate design values.
If (lead angle < 10° or >35°)
then change angle and recalculate design values.
If (return angle < lead angle)
then change return angle and recalculate design values.
If (joint self-locking & return angle < 90° - tan-1)
then increase return angle.
If (joint not self-locking & return angle >90° - tan-! 1)
then decrease return angle.

USER INTERFACE

In Kappa PC, the user interacts with the expert system application through the
SESSION window (illustrated in Figures 5.5 and 5.6). The user selects an injection
molding feature (Figure 5.5) and then chooses options to initialize or perform the design by

using buttons.

Nominal wall
Cantilever

Snap Joints

Projections Torslonal

1l
il

Depresslons

Figure 5.5 Feature Selection

In Figure 5.6 the buttons are located to the right of the diagram and allow the user
to specify the initial design configuration, change the resulting geometry, select the
material, and perform the design operation. A small number of functions were written to

control the user ir;terface and are listed in Appendix A.

UNBKSAIFISIAL HO N FAVGSY It RIUGA D AR RPN A=t Jime

Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SRR ER R R 1ANENR B TART TR AARI A IR et 81

56

Snap Joint Demonstralion

tlflﬁlm :ura. P
daess,
sidth, b ndrast, y
legth, Lo ead
return argle, R angie, LA

L Configuration I

L Change Geometry I

Select Material I

L

Design |

Reset I

L

Stop

|

Snap Joint Configuration

Material Propartes

Design Specificotions

Figure 5.6 Design Interface

To initialize the design geomeiry, the user clicks the CONFIGURATION button
which executes a method attached to the cantilever class. This method asks the user to

specify the initial design configuration (Figure 5.7) and applies design heuristics to

generate an initial geometry for the cantilever. For some entries, the user is provided a list

of appropriate responses, which is obtained by clicking the arrow on the right hand side of

the menu (e.g., “Select component types” prompt). Kappa PC also checks the values

entered by the user and limits the entries to ranges specified by the developer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ST MBBRNAZEUEI R A HLIRAD- B BRI BD 4058, E Py renumepms sremosm

57

Inttial design configuration
Selacttype ot geometry [contant I 1B
Selectnumber of assemblies lmuﬂlpfe , L E]
Select component types [plasﬂc_pmc I It
plastic_plastic
Enter nominal wall thickness plastic_metal

] —
] —

is snap selflockiag? lyes J I ‘il

Enter maximum length of
langth ot [0.750000 !
] —
Enter maximum sspamtng force C

Figure 5.7. Initializing Cantilever Configuration

The user can change the initial geometry by clicking on the CHANGE GEOMETRY
button, which executes another method attached to the cantilever class. This method

provides the user an opportunity to change any, or all, of the geometry data (Figure 5.8).

Geometry data

Enter length [0.675000

Enter width IEOOOOO

Enter thickness 10.125000

Enter undercut 0.056448

Enter lead angle lis

Enter retumn angle lE

L._L_.___L_.___

[ok ”Reset[

Figure 5.8. Entering Geometry Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ty e aAaBSuuiAiiiae e sRfimR e T e

58

Finally, the user makes a material choice by clicking the SELECT MATERIAL
button. This action provides a list of all the material instances, and asks the user to select
one. Each of the actions -- CONFIGURATION, CHANGE GEOMETRY, and SELECT
MATERIAL -- also outputs the resuiting values, or properties. The user can review the
output and continue to make changes, enabling an expert designer to interact with the expert
system to specify a configuration that is close to meeting the design specifications. A
novice can merely use the initial configuration generated by the system.

At this point, the user asks the system to perform the design operations by clicking
on the DESIGN button. This activates the inference mechanism, to process the applicable
rules for this design situation. The expert system calculates the strain and the assembly
forces resulting from this configuration and compares these values to the allowable values
for the given material. The system then iteratively alters the geometry until a design
meeting the specifications is reached.

An example design solution is illustrated in Figure 5.9. At this point, the user may

want to make a material change or change the configuration and then ask the system to

Snap Joint Demonstation Configuration l

Change Geometry l

!
I
l Select Material i
I
!
1
|

Design I
Reset I
Siop }
Saap Joint Canfiguration Material Properties Design Spacifications

Cross S G >3 t Material: CalibreB00.10
Numbor of Ascomblias: multiple Type: Polycarbonata Strain D.0268
Materials: plastic_plast Properties @ 73F Allowable 0.0273
SelfHocking: yes Tensile Stress @yield 8700 Maoting Force 342
Length 0750 Max 0.750 Elongation @yield 65
Width 0500 Flexura! Modulus 350000 Defloction Force 16.8
Thickness 0.125 Comp Stuess @yleld 14000
Underct 3.08% Stolic Coefficient of Friction Faalure dats writien
Angles:lead 35 Rsatumn 75 Plastic_Plasec 0.55 program fila: feadata
Force:Mating 0.0 Sep. 0.0 Plastic_Metal 045
“f | =] (¢l | {+] [l | i

Figure 5.9. Design Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M EZRUNES NN R AR L1 0 WD B NOUIMER L RLARIT ST

R

59
produce a new design. This approach involves the user in the final design, providing an
analysis tool to the expert designer while incorporating his experience. It also provides a
design tool for the novice, producing a part which meets the design specifications.

Several examples of the design process are given in Appendix B. These exampies
were generated using the rule tracing feature of Kappa PC and illustrate the way the rules
are applied in solving the problems with different design constraints. Different solutions,
or “good” designs, are produced for the various configurations since the rules are applied
in different sequences. Another tool for examining the reasoning process of the prototype
system 1is the explanation facility, which explains how slot values are formulated in the
design process. However, the explanation facility in Kappa PC was not activated for the
prototype expert system. To include this facility in the expert system requires that
explanations for each rule be entered in the comment field of the rule. Essentially the same
information is available in the rule traces, but the explanation facility is more easily
interpreted by a user.

INFERENCE STRATEGIES

The inference engine is responsible for searching the knowledge base and
recommending a solution to the proposed problem. Specifically, the inference engine must
decide where to start the inference process, which rules to fire when more than one is
triggered (conflict resolution), and how to conduct the search, all in an effective and
efficient manner.

Kappa PC provides a variety of methods to handle conflict resolution. Rule
priorities can be assigned to control the reasoning path when more than one line of
inference is possible. Rule sets can be established so only rules relevant to the task being
performed are used, thus providing efficiency and modularity for the developer. And,
Kappa PC provides four options for conflict resolution when more than one rule is eligible
for firing: selective, breadth-first, depth-first, and best-first. The selective option is not
exhaustive; only the first rule associated with the asserted facts is tested, thus only one
successful path of reasoning is followed. Since the search is not exhaustive, it is more
efficient. The remaining options are all exhaustive, finding all possible implications of the

data that initiated the chaining process. The breadth-first option evaluates all the rules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Y NIRENUEATHHANIN 135459 BRAD TR M ARM s ques aremam

60

associated with the asserted facts, before evaluating the next level of rules. The depth-first
option evaluates one rule associated with the asserted facts and all its consequences, before
evaluating other rules associated with the asserted facts. The best-first option combines
features of the breadth-first and depth-first options, using rule priorities to select the “best”
rule to fire next, i.e., it looks at all the rule possibilities and selects the one with the highest
priority.

The two search strategies employed in Kappa PC are forward ~nd backward
reasoning. Forward reasoning, or data driven chaining, proceeds from premises (if part)
toward conclusions (then part). It begins by declaring new facts and proceeds by matching
known facts to the premises of rules. If all the premises of a rule are verified, the
conclusions in the rules are asserted, generating new facts which can match the premises of
more rules. Backward reasoning, or goal-driven chaining, tries to verify a fact, i.e., reach
a goal, by finding rules which can prove the fact, in the conclusions, and then attempting to
verify their premises. The premises in turn become new facts to be verified by other rules.
The same rules can be used in both forward and backward reasoning.

A goal driven, or backward reasoning approach, is normally used in a design
problem. In the cantilever snap joint design problem, a good design, i.e., a solution

meeting the specifications, is defined by:
If (e<allowable strain & assembly forces < allowable forces)

then design is good.
Due to limitations in the early versions of the Kappa PC software, a backward reasoning
strategy did not work. A simple solution to this obstacle was to use a forward reasoning
strategy, incorporating a goal to terminate the reasoning.

The effects of the various conflict resolution options were also examined (see
Appendix B). The order of rule assertion definitely affects the design solution and can
result in a design which is over-corrected for the design constraints. This occurs for
several reasons. A fairly large arbitrary increment was selected for the undercut, cantilever
length, and angle modifications, which over-corrects the design solutions. Once a

constraint is met, the application of additional design rules can result in further reductions,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T SHHAGH BRI R A JATE A (R 1 DI FOU0 B AOOU IR AR B ms e e

61

or over-corrections. However, additional design rules can be added to the expert system to
deal with both of these situations.
PROTOTYPE EVALUATION

Expert sysiems are generally validated by comparing the performance of the system
with that of an expert. Formal measures, both quantitative and qualitative, have been
developed to ascertain the effectiveness of an expert system. The prototype expert system
was examined by an injection molding expert designer as well as injection molding
software developers.

The initial validation of the prototype expert system verified that analytical results
of the prototype match results from a commercial software package PD1' . Results were
compared by calculating the snap joint undercut deflection for a range of loading conditions
and for the following materials:

ABS DOW Magnum 3661

ABS DOW Pulse 1725

ABS GE B30-0001

ABS Mobay Bayblend

Modified PPO Noryl N1-190
Polycarbonate DOW Calibre 800 -10
Polyamide DuPont Zytel-101

A T VDAt Nak
Acetal DuPont Natural

Calculations were also conducted independently to confirm the accuracy of the PD1
program results. Using the same material property data, no significant differences were
noted in the results.

A second evaluation was performed independently by two injection molding
software developers, Mike Craven and Gregg Nicholas®. The evaluators were asked to
address the following features of the prototype: correlation to known design solutions,
procedures for data input, flexibility for altering configurations, design constraints, output
usability and format, and ease-of-use. See Appendix E for a copy of the evaluation

instrument. Comments from the evaluators were positive, with only a single suggestion to

' PD1, an IDES product for Injection Molding Part Design, is an on-line tutorial and interactive design
tool for ribs, cross ribs and snap fits.

2 Integrated Design Engineering Systems, Inc., PO Box 2131 Laramie, WY 82070.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s “llmi@munlﬂuﬂlmrlmn‘ T EdiZ ol A8 FHEMEES S

62
post a busy message on the screen when the system is not expecting input from the user.
This alerts the user to wait for the system to process the information.

An expert designer was then asked to review the performance of the prototype
expert system. Mr. Robert Cramer’, a major contributor to the development of the PD1
program, confirmed that the performance of the system closely matched his expertise. Mr.
Cramer did suggest a modification to the operation / user interface of the expert system to
establish maximum dimensions for a projection which must fit in a constrained location.
Changes to accommodate this modification were relatively easy to accomplish and atiest to
the usability of hybrid expert system shells for design problems. The changes were
confined to a single class since similar functions are grouped in the object hierarchy.

The modifications have produced a more responsive expert system that more
accurately reflects design concerns of a plastic part designer. The ability to easily adapt an

expert system to user preferences produces a more useful design tool.

® Associate Development Scientist, DOW Chemical Company, 433 Building, Midland ML

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6
INTEGRATION OF EXTERNAL KNOWLEDGE SOURCES

In a complex design problem, an engineer typically enlists a variety of computer-
aided engineering tools to assist in the design process. A solid modeling package is often
used to develop a conceptual design and to provide powerful analysis tools; a commercial
database of material properties can assist in selecting appropriate materials for the product.
The prototype expert system resulting from this research can be added to the menu of CAE
tools available to aid the product designer. The system approach to developing a plastic
part, incorporating these tools interactively with a mechanical designer, is depicted in

Figure 6.1.

PROSPECTOR §

I-DEAS B
| Material Database B

Solid Modeler

files

f

(EXPERT SYSTEM PROTOTYPE

Heuristic IF Objects/ Analysis
Rules Methods lA.lgOl’itth

Figure 6.1. System Approach

63

TN BRI A B A T B TR B BRI IS A Bt B o s v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U MBAIRNNANDI N RN ATNRS B RELES B Sa L EGaLReEeTEm T

64

The design scenario for this system approach involves a series of steps. The
designer using a solid moceler, e.g., -DEAS™ (Integrated Design Engineering Analysis
System) available from the Structural Dynamics Research Corporation', inputs a
conceptual design to meet a set of functional specifications for a plastic part. If a snap joint
is required for the plastic part design, the designer invokes the prototype expert system to
determine a set of geometric parameters meeting specifications for the required joint. At
this point in the design process, a material selection for the plastic part will have typically
been made; if not, the designer can rely on the expert system to incorporate knowledge
contained in an external materials database, PROSPECTOR from IDES?, to assist in
material selection. Since the expert system is interactive, an experienced designer can
influence the parameter generation, based on his/her individual experience. The expert
system, using the knowledge sources interactively with the designer, determines the
feasibility of the conceptual design, and modifies the design, iteratively, until acceptable
design parameters are generated for the snap joint.

The expert system shell, Kappa PC, provides the capability for a developer to
interface the expert system to external knowledge sources. Kappa PC interfaces to Lotus®
1-2-3® spreadsheets, dBASE® databases, and external software through built-in functions.
Kappa PC also provides functions to read and write ASCI files which extends interface
capabilities to most software.

Without modification to the solid modeler, real time information exchange between
the prototype expert system and the modeler is not possible. However, the prototype can
effectively communicate with the solid modeler through the Kappa PC functions for ASCII
file exchanges, to share geometry information. In addition to the geometry database, the
solid modeler can also provide analysis tools such as finite element modeling, vibration
analysis, mold filling/cooling analysis and graphical numerical control machining. These
capabilities have not been demonstrated for the prototype expert system, but can be utilized

at any point in the design process since the geometry database resulting from the solid

modeler is common to each of these options.

! Also available as CAEDS® (Computer Aided Engineering Design System) from BM®
2 Integrated Design Engineering Systems, Inc., PO Box 2131 Laramie, WY 82070.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SV RIREZ R RE B A R LAR0E, B RS0 1 PR N AR SRR e 3k

65

The material properties for the cantilever snap joint design prototype are entered
from a dBase compatible database, generated from the properties available in
PROSPECTOR. This functionality is incorporated in the prototype system through the
Kappa PC database functions, which map records from 2 database o objects in the expert
system. This approach augments the expert system with material selection features in
existing commercial software and takes advantage of the database capabilities for
effectively, and efficiently, searching large material databases.

Since only a limited amount of code is required to perform the analysis for a snap
joint, the prototype design embeds analysis capabilities in methods attached to the
knowledge elements. In larger, more complex applications, the developer can incorporate
external analysis programs by using Kappa PC functions to execute external programs and
to pass arguments between the external programs and the expert system. Kappa PC also
provides functions for reading and writing ASCII files to incorporate existing C code into
methods attached to the knowledge elements.

EXTERNAL INTERFACE CAPABILITIES

The ASCII file transfer capabilities of Kappa PC provide a means for passing
parameters to external programs. These capabilities include functions to open/close files,
read characters or words, and write formatted text or internal Kappa PC files (classes,
instances, rules, and functions). Using these functions, the prototype expert system is
interfaced to a solid modeling package. External programs can also be executed from
within Kappa PC, through a built-in function which passes up to three arguments to the
external program.

Built-in functions interface Kappa PC to databases and spreadsheets, allowing
Kappa PC to work directly with database or spreadsheet files. These functions open/close
files, read/write selected data records or fields, and map Kappa PC slots to database fields.
These functions also allow instances in the object-based hierarchy to be generated from the
database information.

Kappa PC is available as a C library, to add intelligence capabilities to in-house
programs; routines can be added to this library and called like any other Kappa PC
functions. A run-time version is available to developers who want to incorporate Kappa
PC into their software.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SO SRR SR A RN LU A A M AT 11630 B LR IEAREESES Sl xes

66
SOLID MODELING SOCFTWARE

The engineer has a host of solid modeling software available to assist with
engineering design tasks. I-DEAS, a package widely used by the mechanical engineering
community, is an integrated package of software tools incorporating a concurrent
engineering approach to mechanical design problems. I-DEAS consists of a number of
“Families” of products including Solid Modeling, Engineering Analysis, System
Dynamics, Test Data Analysis, Drafting, and Manufacturing. These integrated modules
form a fully functional design tool for the engineer.

The Solid Modeling family includes an Object Modeling module which creates
objects either from a menu of primitive solids (blocks, cylinders, cones, spheres) or from
extruding or rotating a profile. These objects can be modified by various construction
operations; complex objects are constructed through Boolean operations to join objects with
each other or to cut them from one another. A geometry database is also maintained, which
can be used for mass and inertia property calculation, interference studies, finite element
modeling, manufacturing, and generating engineering drawings.

The constant cross-section snap joint was modeled in I'DEAS by generating a
profile and extruding the profile to form a solid object (Figure 6.2). The snap joint was
then created as a feature with the following parameters: length, width, thickness, undercut,
return angle, lead angle -- parameters generated by the prototype expert system as a result
of the DESIGN process. (See Appendix D for a listing of the I-DEAS commands to
generate the SNAPJOINT feature.

width —~ — — — — — T Z 2
(extruded distance) - . — Z _ undercut
7 N N L7 hickness

‘——‘ length —

lead angle
return angle

Figure 6.2. Cantilever Snap Joint Object

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SONRSTFIRNBEA KRG NGOG B RN BT

67

The prototype expert system writes these parameters to a file, in I-DEAS program
file format, through Kappa PC built-in functions for ASCII file exchanges. The function
write_feadata accomplishes this information exchange and is listed in Appendix A.

Once the parameters are determined, the designer uses the I-DEAS Model File
module to generate the snap joint object at a specified location. The designer selects the
Program File function, followed by the RUN command to execute the program file
generated by the prototype system. The program file CONSTRUCTs an object from the
SNAPJOINT feature, which is stored in the FEATURES Universal Library file.

The I-DEAS construction commands snap two coincident faces together and then
use various positioning options to properly align the two faces. The designer is asked to
specify the planar faces to be joined (one on the snap joint object and the other on the
plastic part) and then to designate the exact location on the plastic part for the snap joint
object. The snap joint object is thus attached to the nominal wall of the plastic part, ata
user specified location.

DATABASE SOFTWARE

One problem facing a plastic designer is the best choice of plastic material for a
particular application. Thousands of commercial grades of plastic materials are available on
the U.S. market, making it nearly impossible for a designer to be familiar with the many
blended and alloyed materials available. However, software tools exist to assist in
selecting an appropriate material.

Plastic material properties are available in a commercial product, PROSPECTOR.
PROSPECTOR uses the capabilities of a sophisticated data management system,
FOXPRO®, to provide query, display, report capabilities, and graphical visualization aids.
The user interacts with PROSPECTOR to define a subset of materials that meet user
specifications; data can be viewed in table or chart form to assist in defining the subset.

The PROSPECTOR database contains over 18,000 plastic materials, each having
up to one hundred attributes representing general material characteristics, physical,
mechanical, thermal, electrical, and flammability data. The information in the database is

acquired directly from material manufacturers and suppliers and conforms to ASTM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SHPAARDASKMAANAH LT ARU H 2800 RoslEa AR

68
specifications. A data sheet for a sample material, Calibre 800-4, is listed in Table 6.1.
The user can query the database for any combination of the properties on the data sheet,
which are important for a particular application. For example, a plastic part might need to
be transparent and able to withstand high installation temperatures.

PROSPECTOR offers the user two major menu options - Search and Display.
Search allows the user to narrow the number of materials in the working database to only
those of interest. The user selects a property to search, which can be either a text field or a
numeric field. If a text field is chosen, the user selects the desired items from a list of all
possible values. The numeric search shows a distribution of the material property to aid in
picking a range of data values for the search.

The Display option provides the user two formats for viewing the searched material
properiies. The Data Sheet shows all data for a selected material, while the Data Table
shows selected properties for the working database. The database can be sorted according
to a particular property, or the Locate function can be used to find a material with a specific
property value. The user can then use the Data Sheet to view successive materials and their
properties. Within the Data Table, the user specifies the properties to display for each
material and the order to display the properties.

PROSPECTOR was modified to produce an ASCII report, since PROSPECTOR’s
internal files are encrypted; the report is then used to generate a dBase compatibie file which
can be interfaced directly to the prototype expert system. A small amount of code
development was necessary to generate a dBase compatible file from the PROSPECTOR
output. The program also enters material property data (e.g., coefficients of friction) that
are not available in the PROSPECTOR database. The edit program is listed in Appendix C.

The interface capabilities of Kappa PC were then used to import the material
properties from the database into the prototype expert system. The prototype expert system
creates material instances from the external database and enters the database fields into the
object slots of each material. The object-based hierarchy provides the capability of
automatically generating the instances from the material database and updates the user
interface to reflect the current material database. The function that accomplishes this

interface, loaddb, is listed in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.1. PROSPECTOR Data Sheet

69

Trade Name : Calibre 8G0-4

Manufacturer: Dow Chemical U.S.A.

Generic Name: Polycarbonate

------- Property

-General
Agency Ratings
Appearance
Features

Filler Percent By Volume
Filler Percent By Weight
Filler/Additive
Processing Methods

Recycled
Uses

-Physical
Cont. Service Temperature
Glass Transition Tmp
Linear Mold Shrink
Melt Flow
Melt Flow Condition
Melt Pt
VSecﬁ'ic Gravity
ater Absorpuon 24 hrs.
Water Absorption @ Equil
-Mechanical
Compressive Modulus
Compressive Strength
Elongation @ Br
Elongation @ Yield
Flexural Modulus
Flexural Strength @ Y1d
Gardner Impact
Hardness Value
Notched Izod Impact
Shear Modulus
Shear Strength
Tensile Impact Strength
Tensile Modulus
Tensile Strength @ Brk
Tensile Strencth @ Yld
Unnotched Izod Impact
-Optical
aze

P NMIRARARTIAN WS R IS P UITUA MR ARt kAT AR meanmeem mrrmm—

Value Units
: Ignition Resistant
: Mold Release, Good
: UV Resistant :
: : %
: %
: Coextrusion
: Blow Molding, Extrusion
: Extrusion, Profile
: Extrusion, Sheet
: Blow Molding, Injection
: Thermoforming
:Yes
: Appliances
: Business Equipment
: Electrical Parts
: Lawn and Garden E(illnpment
: Communication Application
: :F
: :F
: 6.000 : mils/in
:4.00 : /10 min
:0-300C/1.2 kg :
: :F
: 1.2095 :-
:0.150 : %
:0.320 : %
: : psi
: : psi
: 100.0 :1‘)70
:6.5 : %
1360000 : p31
: 14000 : psi
: :1n-lb
: Rockwell Hardness M-Scale 59 :
:12.00 @ 73°F 0.12500" : ft-Ib/in
: : psi
: : psi
126000 @ 73F : Bolb/inn
: 330000 :psi
: 8500 : p51
: 8700 : psi
:No Break @ 737F, 0.12500" : ft-1b/in
: %

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UREIRGHIAT ARV 1IR3 B a3 & BB

T

Refractive Index
Transmittance
-Thermal
Brittle Temp
Coef Linear Thermal Exp
Deflection Temp @ 264 psi
Deflection Temp @ 66 psi
Specific Heat
ermal Conductivity
Vicat Softening Point
-Flammability
Lirnitin%Oxygen Index
-Electric
Dielectric Constant
Dielectric Strength
Dissipation Factor
Surface Resistivity
Volume Resistivity
-Underwriter Labs
Arc Resistance
Comparative Tracking Ind
High Volt Arc Res to Ign
High Volt Arc Track Rate
High-AmpIere_ Arc Ignition
Hot Wire Ignition
Rel Temp Indx Mech w/Imp
Rel Temp Indx Mech w/olmp
Relative Track Ind Elect
UL 94 Ratintg .
-Injection Molding
gac}c Pr_ic_ssure
Drying Tem
Drrg%nﬁ Time
Freeze Temp
Front Cylinder Temp
injection Pressure
Injection Time
Middle Cylinder Temp
Minimum Wall Thickness
Mold qu_
No Flow Temp
Nozzle Tm
Processing Temp
Rear Cﬂl}nder Temp
Screw RPM
-'IglermosetD)
arent Densit
Bglpk Factor Y
Mix Ratio By Volume
Mix Ratio By Weight
Mixed Viscosity
Stoichiometry
-Elastomer
Compression Set
Tens Modulus, 100% Elong
Tens Modulus, 200% Elong
Tens Modulus, 300% Elong
Tens Modulus, 50% Elong

3.80000
1266

1310
§4o.00
:3.00

:405.00
+0.001000

V-0

70

%

: in”-5/(in-"F)
:°F

:F
:BTU/Ib°F
: BFTUin/hrft"Z'F

%

: V/10-3 in

ohm
:ohmcm

: seconds

: # of arcs
: seconds

- Ib/ftr3

1 cps
1%

2%,
:psi
: psi
: psi
: psi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TONHAETIISA RN S R I XS] HANR Wi e

71
HARDWARE / SOFTWARE ENVIRONMENT

A major challenge facing computer-aided engineering software developers is
interfacing a variety of tools that exist on an even wider range of hardware. For the
prototype expert system, three distinct software impiementations had to be considered:
Kappa PC is a windows based PC product, PROSPECTOR is a DOS based PC product,
and I-DEAS is a UNIX based workstation product. Specific requirements for each of these
software products are listed below.

The expert system shell Kappa PC is a general purpose C-based application
development and delivery environment for PCs and requires the following system
components:

* 286 or higher processor

* 640 KB RAM

» Hercules™ Graphics Card, EGA®, or VGA® Monitor
* 2 MB disk space

e MS-DOS 3.0
* Microsoft Windows 3.0

The PROSPECTOR commercial database, available from IDES, requires the following:

* IBM or compatible PC
° 4MB RAM

e 18N M A:Sk pace

Aot LVYAII A2

* Microsoft Windows 3.1 (Enhanced mode)
I-DEAS™, installed on a DECstation ULTRIX configuration requires:

* ULTRIX 4.2A

DECWindows 4.2A

PHIGS 2.3A and PEX 5.0 Graphics Libraries

Fortran 77 v3.1

16 MB Memory

* 75 MB disk space (minimum / options additionally require up to 450MB)
* 150 MB swap space

*

The hardware / software requirements of these software packages highly restrict the
platforms that can support the integrated approach of the expert system application. Hence,
the prototype expert system was implemented on an IBM DX266 (Model 77) OS/2 v2.11.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

The capabilities of the IBM system provide a seamless tool for the implementation of the
integrated prototype system.
SUMMARY

The integration of CAE software tools for plastic part design significantly simplifies
the design process. Incorporating existing CAE applicatioris such as computer-aided
design and solid modeling, material databases, and analysis software not only extends the
utility of the prototype expert system, but provides the designer with a single, easy-to-learn
and easy-to-use tool for generating the design for plastic parts. The utility of the prototype

is further enhanced by interactively involving the designer in the design process.

ST MBREIANGATIAK) D8 B1303K 3 TR MR Lagdtn M aea

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S NIRREEEEUIDAR Y E TR0 R ET PRSI EEHAYE

CHAPTER 7
RESULTS AND CONCLUSIONS

Expert systems have been applied to a variety of engineering problems. Early
successes have been recorded in derivation problems: monitoring manufacturing
processes, diagnosing and predicting failures, controlling chemical processing, and
advising FEM users. These systems are currently being implemented by the users of the
systems, ofien with fairly easy-to-use PC expert system shells with robust development
tools. Expert systems have also been developed in the last decade for formation problems
in planning and design. However, most of these implementations have used the heuristic
programming languages LISP and PROLOG or complex programming environments like
KEE and ART.

This research has resulted in a prototype expert system implementation for an
engineering design application: the design of a feature for an injection molded plastic part.
The prototype system was implemented using an expert system shell and has been
evaluated by experts in both injection molding part design and software development. The
prototype was modified to reflect these evaluations; the resulting expert system performs
closely to an expert designer and is relatively simple for a designer to use.

The prototype expert system addresses a fairly narrow domain. To be an effective
design tool, the prototype must be extended from basic feature design to the design of
complex parts and their corresponding molds and to other manufacturing processes. With
the object oriented rule-based representation scheme, additional features and processes can
be easily incorporated. However, the value of this prototype is in establishing the
guidelines, or templates, for developing expert system tools for design processes.

Previous research in expert system applications for engineering design has not
addressed the use of high level development tools, i.e., expert system shells. One

exception is the development of an automated fixture design system (MEFDES by kumar,

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- WINIBEAMZRHAT B P IR0 N 1216 PO MR IS ren i B

74

Nee, and Prombanpong 1992) which is a planning application that integrates an expert
system, developed with the Nexpert Object expert system shell, with the ME30 CAD
system. This research, on the other hand, addresses an engineering design application and
integrates the expert system with a sclid modeling system as well as external databases and
interfaces to external software.
RESULTS

The goal of this research was to develop a standard approach to implementing
expert systems for engineering design applications. To pursue this goal, several
fundamental tasks (or objectives) for developing an expert system for an engineering
design application were explored and formalized:

* investigate the use of expert systems shells for design problems

« categorize the knowledge required to solve design problems

formulate representations for the knowledge
* integrate the expert system with external databases and solid modeling software
* develop interactive capabilities, as well as graphical interfaces.

The accomplishments for each of these tasks, along with recommendations pertinent to

expert system implementations for engineering design applications, are discussed in each of

the following sections.

EXPERT SYSTEM SHELLS. The prototype application has demonstrated the
feasibility of using shells to develop expert systems for formation problems. The
successful implementation has identified features that are essential in an expert system
development tool for an engineering design application: a variety of knowledge
representations and capabilities to integrate external software; to develop an interactive,
graphical user interface; and for explanation.

Kappa PC has proven to be a good development tool for design problems. The
cantilever snap joini prototype development has demonstrated that knowledge characteristic
to a design problem can be effectively represented in an object-oriented, rule-based system.
The objects, and associated methods, are useful in representing materials and specifications
data, as well as the engineering models and scientific principles used to analyze the design.

The heuristics, which are an integral part of any design problem, are suitably represented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

"Il MBI UI A HRIINE] S PRI P ERN IO R & =

75
by rules. Kappa PC provides capabilities to integrate the knowledge base with existing
databases and software, including solid modeling systems. Kappa PC also provides an
extensive development environment which facilitates rapid prototype implementation and
interactive capabilities to integrate the user’s expertise with the system.

The prototype development has also demonstrated the ease of using an expert
system shell for design applications. A user familiar with Kappa PC can develop a simple
system, complete with a viable user interface, in a matter of hours. For the user who is
also the design engineer, familiar with the design heuristics of the problem, knowledge
acquisition for the system is a much simpler task. The design engineer is able to provide
many of the rules from his/her own experience. Since many programming tasks have been
incorporated in the development tools within Kappa PC, a typical engineer with limited
programming skills will be able to use Kappa PC effectively. Thus Kappa PCisa
powerful tool for the design engineer.

The demonstration system has illustrated the utility of expert system shells for
engineering design problems. Expert system shells deal effectively with the complexity of
engineering design, and they provide a designer, familiar with the design heuristics of a
problem, with an easy-to-use tool that facilitates rapid development of an expert system.

CATEGORIZE KNOWLEDGE. A variety of knowledge typically found in design
problems was identified: hierarchy of configurations and components, geometric
information and constraints, material properties, specifications, analysis procedures based
on governing equations, and heuristic design rules. The prototype system has specifically
addressed each of the knowledge categorizations identified as key elements of mechanical
engineering design.

KNOWLEDGE REPRESENTATION.

A rule-based system is a good representation for the many guidelines and rules of
thumb that are invoked in a design application. Generally, these rules take the form of “If-
Then” procedures. However, the complexity of design does not lend itself to a procedural
collection of these rules. Often, the expert designer cannot develop this set of procedures
for a particular design problem but can formuiate various rules, as premises leading to

conclusions, that he uses to arrive at a proposed solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S NMBEALEZAN I MR E LA 8 Ralias 1

76

An object-oriented environment is an excellent paradigm for representing the
knowledge in engineering design problems. A mechanical design is often a hierarchy of
componenis with specific attributes, which can be modeled by a network of objects and
their siot values. The relationships between the components are similar to the relationships
in a network and can be modeled with methods attached to the objects. These
relationships, e.g., algorithmic analysis procedures, can also be executed as external
programs. The remaining knowledge -- materials and properties, geometric configurations
and constraints, and specifications -- is also amenable to representation as objects.

INTEGRATION. The prototype system integrates two commercial products: the
PROSPECTOCR external materials database and Structural Dynamics Research
Corporation’s I-DEAS™ (Integrated Design Engineering Analysis System). This
integration expands the capability and flexibility of the expert system. Since engineering
design often uses databases, either large materials databases or geometry databases, and
involves any number of simple to complex analysis software packages, the expert system
design aid must have the functionality to incorporate a variety of external knowledge
sources in engineering design applications. The integration can often be effectively
accomplished through ASCII file exchanges.

INTERACTIVE. The proiotype system exhibits an interactive user interface, which

is instrumental in a user’s acceptance of an expert system. A well deveioped graphical
interface affects how easy a system is to learn and contributes to the ease of use, and thus
to the system’s eventual acceptance. The user interface must address the novice designer as
well as the expert designer, allowing the user to participate in the design process.

The rich development environment of the expert system shell chosen for the
prototype provides the developer with the means to generate a sophisticated user interface,
incorporating graphical and interactive tools. The toolkit available in Kappa PC greatly
simplifies the user interface development resulting in an effective, interactive interface.
CONCLUSIONS

In design problems, a variety of knowledge is available for the design solution.
Integrating all these knowledge sources into the expert system enhances the problem

solving capabilities of the system. In the prototype expert system, the material information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SV MEIA R rd W04 B FARLAR. B DRy R Ak BRGS0

77
was loaded from a large materials database, demonstrating the interface capability with
external databases. Realistic design problems need to incorporate an external materials
database containing a wide range of materials.

The algorithmic procedures relevant to designing a cantilever snap fit were
implemented in the methods attached to the objects. However, the algorithmic procedures
contained in the analysis software products available for engineering design are numerous
and lengthy. A more effective approach for incorporating the algorithms in an expert
system is to use the features of the shell to execute external procedures.

A versatile interface accommodates a range of users -- from the novice who uses the
expert system as a tutor, to the expert who uses the system as a design aid or to validate a
proposed design. An expert system is most powerful when it involves an expert user in the
design process. The interactive capabilities of the prototype system incorporate the user as
an additional knowledge source, extending the system from a tutorial package to a truly
important design aid. The rule trace feature in Kappa PC provides essentially the same
information as an explanation facility and was useful in developing the system; however,
an explanation facility needs to be developed to extend the use of the prototype to novice
users, who need a tutorial approach to the design application.

Other expert system tools are emerging as viable development tools for
implementing sophisticated expert systems. Many of the vendors offer their products in the
Windows environment and have incorporated objects and message passing capabilities and
graphical tools for developing and debugging applications. Some of the major toois in
addition to Kappa PC / ProKappa, are Level5 Object, Nexpert Object, and TIRS and ESE
(from IBM). Vendors are working to offer their products on multiple platforms providing
the expert system developer more versatility in distributing expert system applications.

This new generation of expert system tools provides easy-to-learn and easy-to use software
for expert system implementations.

Developing the expert system application also demonstrated a need to address the
same concerns that arise in a large, comprehensive software project, i.e., modularity,
maintainability, scalability, and validation / verification. In developing the knowledge

representations, efforts need to be made to provide modularity for the system. Modularity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

AIENMRIIT DA R I ¥ XY U R A

L

78

makes the system development more efficient anid allows future extensions to be made with
minimal disruption to the system. Modularity influences the maintainability of the system,
but structured programming languages have had a more pronounced impact on the
maintainability of comprehensive software projects. High level tools, Iike expert system
shells, assist the developer in structuring the system and provide an easily understood tool
for maintenance tasks and for system development documentation. Object-oriented
environments are inherently structured, and thus produce more maintainable systems. The
value of an object-based approach was demonstrated when modifications were easily made
to the prototype system. The scalability of the application needs to be addressed during the
development of a prototype system since the prototype may not be applicable to larger,
more complex problems. Finally the developer needs to formulate definite plans to verify /
validate the system. Generally a good test for the expert system is to compare its
performance to an expert, who has not been involved with the expert system development.
A hybrid expert system shell, based on an object-oriented knowledge representation
coupled with production rules, provides a useful tool for the design engineer. The design
engineer, familiar with separating a problem into components, can easily formulate the
components as objects; he can also easily implement his design knowledge with “If-Then”
rules. However, knowledge acquisition may still be a problem, even for the design expert.
The expert must be able io organize his design procedures and express the procedures in
some representation, typically in production rules. This is not a trivial task, and the expert
is often reluctant, or unable to carry out this step.
FUTURE RESEARCH
The prototype implementation characterized the various forms of knowledge used in
design processes and identified corresponding knowledge representations. This work lays
the foundation for expert system implementations for more complex problems, involving
many interrelated design components.
The prototype demonstrated the importance of integrating the knowledge base with
existing databases and analysis software. Thousands of materials exist for manufacturing
plastic parts. Database features are often employed in selecting an appropriate subset of

materials for a particular application, but the format of some existing databases is not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

directly compatible with the Kappa PC database interface. Standardization of database
representations will promote the integration of existing databases with expert syster
knowledge bases. Incorporating the geometric and features databases generated by
computer-aided design and solid modeling software into an expert system alleviates the
user from providing this information to the system and ensures consistency of the data. In
addition, the sophisiicated design aspects of the CAE software can be exploited in
developing the conceptual design.

More complex engineering problems require more advanced analysis tools, like
finite element modeling. A widely used, integrated software system from the Structural
Dynamics Research Corporation (SDRC), ' DEAS™, is used for conceptual design,
analysis, detailed design and drafting, computer-aided testing and manufacturing of
mechanical products. I-DEAS not only offers FEM capabilities, but also a solid modeling
database, a material data system, dynamic analysis, numerical control machining and
plastics analysis. Coupling an analysis tool like I-DEAS with an expert system produces
an extremely valuable design aid and can be accomplished in one of three ways:
embedding the expert system in the analysis tool, embedding the analysis tool in the expert
system, or executing each system independently sharing information between the two
applications through a blackboard architecture. For sophisticated systems like I-DEAS, the
first approach provides the most flexibility to the designer; the full capabilities of the
analysis tool are available for the design problem, while the expert system guides the
design solution. The second approach is easier to implement and is appropriate for simpler
analysis systems. Executing the two systems independently requires a great deal of
communication between the systems, which may not be easily developed.

Extensive user interface features impact the acceptance and viability of a software

product. Kappa PC provides a good set of graphical tools for developing an interactive,

R[0S S Cex

responsive user interface. More development in the user interface should focus on

explanation and knowledge acquisition capabilities. Explanations of the reasoning used in
the design process extend the role of an expert system to that of a computer-assisied
instructor. A knowledge acquisition facility helps ensure that the expert system will

continue to evolve and will continue to be used. Involving the expert user, as a knowledge

NeARIGDHL NN ISR § YRS RIXEY DX,

Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SIBRFIRR IR IR W N BLIKLD i /XI5 B3 000N M27A B s s = ==

Y

i

80

source, and adding this knowledge to the database extends the usefulness of the expert
system design.

The modularity of an object-based knowledge representation readily permits
extensions to the prototype for the complete hierarchy of compiex piastic parts: the nominal
wall, projections off the nominal wall, and depressions into the nominal wall. These three
classifications can be implemented as distinct classes; the snap joint class is a subclass of
projections. Other features found in injection molding applications -- annular snap-fits,
ribs, bosses, holes -- are subclasses of the projection and depression classes. Complex
features such as threads, springs, gears, and bearings are combinations of the basic
elements. Manufacturing processes can be incorporated in the prototype through the use of
rule sets. The rules used for injection molding processes can be grouped in a set; and sets
can be constructed for other manufacturing processes.

An experienced designer routinely considers various factors for optimizing a
design, e.g., weight, volume, and cost, and adjusis his designs accordingly. Rules can be
added to the prototype expert system to incorporate optimization techniques in evaluating
the design. I-DEAS includes an optimization task within the FEM module; existing
software routines for optimization can also be executed using the shell interface capabilities
to external programs.

A fully functioning expert system incorporating these complex features would
provide a powerful design aid for the mechanical designer. A design engineer, using the
SDRC solid modeling system, could develop a conceptual design; the resulting solid
modeling databases would serve as knowledge sources for the expert system. Other
knowledge sources would be constructed from the materials data system, heuristic rules for
part design, aﬁd analysis software, such as finite element modeling. The expert system,
using these knowledge sources interactively with the designer, would determine the
feasibility of the conceptual design, and modify the design, iteratively, until an optimum

design is formulated. The expert system would thus facilitate cooperative problem solving

among multiple experts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G ST RAAMLIMLG WA AR R TAdE 3 SWNANKA LA ARANBRAMETTTT

APPENDIX A

LISTINGS: CLASSES (INCLUDING METHODS),
INSTANCES, RULES, FUNCTIONS

/***/

[x* ALL CLASSES ARE SAVED BELOW *x/

[tk sk sk sk ook ek koot ok sk ool ok kR ks ok ok

Ptttk kool ok stk sk ko o

**3%k CLASS: material

s ok sk kel s ook sk skt st feskofetese ke e ok e e ke f

MakeClass(material, Root);

Jleesckokkskkskkskox METHOD: select ki)
MakeMethod(material, select, [],

{

GetlnstanceList(material, Global:matlist);

AppendToList(Global:matlist, "NEW MATERIAL DATABASE");

cantilever:material_type = PostMenu("Select a material”, Global:matlist);

If (Global:feature:material_type #= "NEW MATERIAL DATABASE")
Then loaddb();

)

/************** METHOD: output_mat **************/
MakeMethod(material, output_mat,],
{
ClearTranscriptimage(output_mat);
DisplayText(output_mat, FormatValue("Material: %s", Global:feature:material_type));
DisplayText(output_mat, FormatValue("nType: %s\nProperties @ 73F",
Global:feature:material_type:type));
DisplayText(output_mat, FormatValue(
"\nTensiie Stress @yieid%8.0f\nElongation @yieid%10.1f",
Global:feature:material_type:tensile_stress, Global:feature:material_type:elongation));
DisplayText(output_mat, FormatValue("
\nFlexural Modulus%12.0f\nComp Stress @yield%10.0f",
Global:feature:material_type:flexural_modulus,
Global:feature:material _type:compressive_stress));
DisplayText(output_mat, FormatValue("\nStatic Coefficient of Friction\n
Plastic_Plastic%10.2f\n Plastic_Metal%10.2{",
Global:feature:material_type:mu_plastic_plastic,
Global:feature:material_type:mu_plastic_metal));

1)
MakeSlot(material:type);
MakeSlot(material:flexural_modulus);

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T IRAAGS AL AR

SetSlotOption(material:flexural_modulus, VALUE_TYPE, NUMBER),
MakeSlot(material:elongation);

SetSlotComment(material:elongation, Percentage);

SetSlotOption(material:elongation, VALUE_TYPE, NUMBER);
SetSlotOption(material:elongation, MINIMUM_VALUE, 0);
SetSlotOption(material:elongation, MAXIMUM_VALUE, 100);
MakeSlot(material:mu_plastic_plastic);

SetSlotOption(material:mu_plastic_plastic, VALUE_TYPE, NUMBER);
MakeSlot(material:mu_plastic_metal);

SetSlotOption(material:mu_plastic_metal, VALUE_TYPE, NUMBER);
MakeSlot(material:tensile_stress);

SetSiotOption(material:tensile_stress, VALUE_TYPE, NUMBER);
MakeSlot(material:compressive_stress);

SetSlotOption(material:compressive_stress, VALUE_TYPE, NUMBER);
MakeSlot(material:flag);

SetSlotOption(materiai:flag, ALLOWABLE_VALUES, yes, no);
material:flag = NULL;

Jekstesiekokoletofeloksooksook ook ok ek ok skok ok

*kxx CLASS: design
MakeClass(design, Root);
MakeSlot(design:area);
design:area = 0.062500;
MakeSlot(design:allowstrain);
design:allowstrain = 0.027300;
MakeSlot(design:deforce);
design:deforce = 14.391043;
MakeSlot(design:factor);
design:factor = 1.0;
MakeSlot(design:mateforce);
design:mateforce = 22.796429;
MakeSlot(design:sepforce);
design:sepforce = 11360179;
MakeSlot(design:strain);
design:strain = 0.021492;
MakeSlot(design:tensile_stress);
design:tensile_stress = 181770601.120000;
MakeSlot(design:compressive_stress);
design:compressive_stress = 8101.862864;
MakeSlot(design:mu);
design:mu = .55;
MakeSlot(design:criteria);
design:criteria = good;
MakeSiot(design:iength);
design:length = 0.70;

*akk CLASS: feature

*************************************/
MakeClass(feature, Root);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

AIRIBRAIERLNE DR RN R Iy S R sk anan sie

*ikk CLASS: nominal_wall

skt ook s sk ks sk kot sk ok sk s okl e el et s ek f

MakeClass(nominal_wall, feature);
Ptk deok sk ke sdeokoe el sk ko skt sk ko skok s ks ke ke

*dkk CLASS: projections
Sk fe sk ofe e fe fe o e ke ok ok ok el seske e skesfe sheoe e skesdeslesle e ke skeseskesle e seske sk f

MakeClass(proiections, feature);

...................

*¥kk CLASS: snap_joint
Sfesfesfe e o e e e e sk sfe ke sfeske e e ek seofeoe e seskesfeslesie seofesfeskeskeskese ek f

MakeClass(snap_joint, projections);

*rkk CLASS: cantilever

Shesfeoke ek e fe sk e s sk sfeskeodeate e sfefesieske sk sfe ke ke sesleskeseskesleskesle ek sk f

MakeClass(cantilever, snap_joint);

/************** ME’IHOD: chzmge_geometry **************/
MakeMethod(cantilever, change_geometry, [],

PostInputForm("Geometry data”, cantilever:length, "Enter length”,
cantilever:width,"Enter width", cantilever:thickness, "Enter thickness",
cantilever:undercut, "Enter undercut”, cantilever:lead_angle, "Enter lead angle”,
cantilever:return_angle,"Enter return angle”);

)

MakeMethod(cantilever, init, [],

PostInputForm("Initial design configuration”,
cantilever:geometry,”Select type of geometry",
cantilever:flex, "Select number of assemblies”,
cantilever:material_mating, "Select component types”,
cantilever:NW, "Enter nominal wall thickness",
cantilever:lead_angle, "Enter lead angle”,
cantilever:return_angle,"Enter return angle”,
cantilever:self_locking, "Is snap self locking?",
cantilever:maxlength, "Enter maximum length of cantilever"”,
cantilever:mateforce, "Enter maximum mating force",
cantilever:sepforce, "Enter maximum separating force”);

cantiiever:thickness = .5 * cantilever:NW;

cantilever:length = 5.4 * cantilever:thickness;

If Null?(cantilever:maxlength)

Then (cantilever:maxlength = 3 * cantilever:NW)
Else If (cantilever:maxlength > 3 * cantilever:NW)
Then {
cantilever:maxlength = 3 * cantilever:NW;
PostMessage("Resetting Max Length to 3*Nominal Wall");
|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

&3

S GEAATH LY (B N LIRS 561 08 ¥ B0 R FAIA IR LOATRCER B Reme ST

84

If (cantilever:length > cantilever:maxlength)

Then cantilever:length = cantilever:maxlength;
cantilever:width = 4 * cantilever:thickness;
cantilever:undercut = .176 * cantilever:lergth;
Global:angle = 90 - Atan(design:mu) * 180/ 3.14159;
If Null?(cantilever:sepforce)

Then cantilever:sepforce = 0;
If Null?(cantilever:mateforce)
Then cantilever:mateforce = 0;

1)

/************** ME’IHOD: output__config **************/
MakeMethod(cantilever, output_config, {],
{

ClearTranscriptimage(output_config);
DisplayText(output_config, FormatValue("Cross Section Geometry: %s \nNumber of
Assemblies: %s\nMaterials: %s \nSelf-locking: %s *,
cantilever:geometry, cantilever:flex,cantilever:material_mating,cantilever:self_locking));
DisplayText(output_config, FormatValue(

"\nLength %11.3f Max%8.3\nWidth %13.3f\nThickness %7.3f\nUndercut %8.3f",
cantilever:length, cantilever:maxlength, cantilever:width, cantilever:thickness,
cantilever:undercut));

DisplayText(output_config, FormatValue("\nAngles:Lead%6.0f Return%6.0f",
cantilever:lead_angle, cantilever:return_angle));
DisplayText(output_config, FormatValue("\nForce:Mating%6.1f Sep.%8.1f",
cantilever:mateforce, cantilever:sepforce));
If (cantilever:geometry #= constant)
Then (Bitmap1:FileName = snconst.bmp)
Else If (cantilever:geometry #= hdecreasing)
Then (Bitmapl:FileName = snthk.bmp)
Else Bitmapl:FileName = snwidth.bmp;
DrawImage(Bitmapl);

1)s

!************** METHOD: CalCUlﬂte **************/
MaxeMethod(cantilever, calculate, {J,
{
If (cantilever:geometry #= constant)
Then (design:factor =.67)
Else If (cantilever:geometry #= bdecreasing)
Then (design:factor = 1.09)
Else design:factor = .86;
design:strain = cantilever:undercut * cantilever:thickness / design:factor /
cantilever:length # 2;
If (cantilever:flex #= singie)
Then (design:factor=.7)
Else design:factor = .42;
design:allowstrain = design:factor * cantilever:material_type:elongation / 100;
design:deforce = cantilever:width * cantilever:thickness ~ 2/ 6 *
cantilever:material_type:flexural_modulus * design:strain / cantilever:length;
If (cantilever:material_mating #= plastic_plastic)
Then (design:mu = cantilever:materiai_type:mu_plastic_plastic)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S U RS HET R B RS b P BTk R AR

85

Else design:mu = cantilever:material_type:mu_plastic_metal;
design:mateforce = design:deforce * (design:mu + Tan(cantilever:lead_angle*
3.14159/180))/ (1 - design:mu * Tan(cantilever:lead_angle * 3.14159/180));
design:sepforce = design:deforce * (design:mu + Tan(cantilever:return_angle *
3.1415/180))/ (1 - design:mu * Tan(cantilever:return_angle * 3.14159/ 180));
If (cantilever:geometry #= constant)
Then (design:factor =1.0)
Else If (cantilever:geometry #= bdecreasing)
Then (design:factor =.5)
Else design:factor = .25;
design:area = design:factor * cantilever:width * cantilever:thickness;
design:tensile_stress = design:sepforce / design:area +
cantilever:material_type:flexural_modulus * design:strain;
design:compressive_stress = cantilever:material_type:flexural_modulus * design:strain
- design:mateforce / design:area;
design:length = cantilever:length;

P

Jrsekksdockikxkx METHOD: output, soln Fsksskkssskok dkookok f
MakeMethod(cantilever, output_soln, {],

ClearTranscriptImage(output_soln);

DisplayText(output_soln, FormatValue("\nStrain %10.4f\nAllowable %8.4f",
design:strain, design:allowstrain));

DisplayText(output_soln, FormatValue("\n\nMating Force %10.1f\n",
design:mateforce));

If (cantilever:self_locking #=no)

Then DisplayText(output_soln, FormatValue("\nSeparating Force%10.1f\n",

design:sepforce));

DisplayText(output_soln, FormatValue("\nDeflection Force%10.1f", design:deforce));

DisplayText(output_soln, FormatValue("\n\nFeature data written to \nprogram file:

feadata"));

1)

MakeSlot(cantilever:flex);

SetSlotOption(cantilever:flex, ALLOWABLE_VALUES, single, multiple);
cantilever:flex = multiple;

SetSlotOption(cantilever:flex, PROMPT, "Select number of assemblies”);
MakeSlot(cantilever:geometry);

SetSlotOption(cantilever:geometry, ALLOWABLE_VALUES, constant, hdecreasing,
bdecreasing);

cantilever:geometry = hdecreasing;

SetSlotOption(cantilever:geometry, PROMPT, "Select type of geometry”);
MakeSlot(cantilever:lead_angle);

SetSlotOption(cantilever:lead_angle, VALUE_TYPE, NUMBER);
cantilever:lead_angle = 35;

MakeSlot(cantilever:length);

SetSlotOption(cantilever:length, VALUE_TYPE, NUMBER);

cantilever:length = 0.675000;

MakeSlot(cantilever:material_mating);

SetSlotOption(cantilevermaterial_mating, ALLOWABLE_VALUES, plastic_plastic,
plastic_metal);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LJatan Ras.

Y GRERRHGAN AN B R $ A% g &l B8 Ma LA ek K

86

cantilever:material_mating = plastic_plasiic;

SetSlotOption(cantilever:material_mating, PROMPT, "Select component types");
MakeSlot(cantilever:material_type);

SetSlotOption(cantilever:material_type, VALUE_TYPE, OBJECT);
SetSlotOption{ cantilever:material_type, ALLOWABLE_CLASSES, material);
cantilever:material_type = Calibre.800.10;

MakeSlot(cantilever:mateforce);

SetSiotOption(cantilever:mateforce, VALUE_TYPE, NUMBER);
cantilever:mateforce = 0;

MakeSlot(cantilever:thickness);

SetSlotOption(cantilever:thickness, VALUE_TYPE, NUMBER);
cantilever:thickness = 0.125000;

MakeSlot(cantilever:width);

SeiSlotOption(cantilever:width, VALUE_TYPE, NUMBER);
cantilever:width = 0.500000;

MakeSlot(cantilever:return_angle);

SetSlotOption(cantilever:return_angle, VALUE_TYPE, NUMBER);
cantilever:return_angle = 60;

MakeSlot(cantilever:undercut);

SetSlotOption(cantilever:undercut, VALUE_TYPE, NUMBER);
cantilever:undercut = 0.056448;

MakeSlot(cantilever:NW);

SetSlotOption(cantilever:NW, VALUE_TYPE, NUMBER);
cantilever:NW = 25;

MakeSlot(cantilever:self_locking);

SetSlotOption(cantilever:self_locking, ALLOWABLE_VALUES, yes, no);
cantilever:self_locking = yes;

MakeSlot(cantilever:sepforce);

SetSlotOption(cantilever:sepforce, VALUE_TYPE, NUMBER);
cantilever:sepforce = 0;

MakeSlot(cantilever:maxlength);

cantilever:maxlength = 0.750000;

ekttt et sk sk ok sk ke s ek ek e s ke ko ek

...........................

*dxk CLASS: torsional

*************************************/
MakeClass(torsional, snap_joint);

Pkl etk ek koo ok ek ook ko

**kk CLASS: annular
stofeskeatofelesfole ol kstefeesisiedeoke e s ekl se sk ok f

MakeClass(annular, snap_joint);

[k kool sokok Aok ekl ok ook ok

*xx% CLASS: ribs

skt stk seoleseskokesiok ok sele skt okl sk el skl

MakeClass(ribs, projections);

[kt sdeskesieodeskesdeskeslestede shesfesfe et skt sesfeskesfeske s skesfeskesdeskesfeslefe ok

*dxk CLASS: depressions
*************************************/

MakeClass(depressions, feature);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T UERVAIEANI A IR 300 T 13 0500 BATALVM K Wareu s

[** ALL INSTANCES ARE SAVED BELOW *okf
/***/
MakeSlot(Global:matlist);

SetSlotOption(Global:matlist, MULTIPLE);

SetValue(Global:matlist, Bayblend.FR.1439, Calibre.800.10, Magnum.3661,
Pulse. 1725, "NEW MATERIAL DATABASE");

MakeSlot(Global:angle);

SetSlotOption(Global:angle, VALUE_TYPE, NUMBER);

Global:angle = 61.189194;

MakeSlot(Global:fieldnames);

SetSlotOption(Global:fieldnames, MULTIPLE);

SetValue(Global:fieldnames, TYPE, MODULUS, ELONGATION, MU_PP, MU_PM,
TSTRESS, CSTRESS);

MakeSlot(Global:slotnames);

SetSlotOption(Global:slotnames, MULTIPLE);

SetValue(Global:slotnames, type, flexural_modulus, elongation, mu_plastic_plastic,
mu_plastic_metal, tensile_stress, compressive_stress, flag);

MakeSlot(Global:instance);

Global:instance = Zytl.101..Dry.;

MakeSlot(Global:num };

Global:num = 6;

MakeSlot(Global:feature);

Global:feature = cantilever;

MakeSlot(Global:xscreen);

Global:xscreen = 1024;

MakeSlot(Global:yscreen);

Global:yscreen = 768;

MakeSlot(Globai:RuleSet);

SetSlotOption(Glcbal:RuleSet, MULTIPLE);

SetValue(Global:RuleSet, ckstrain, cktensile_stress, ckcompressive_stress, ckdesign,
cktensile, ckcompressive, smallest_lead_angle, largest_lead_angle, ckreturn_angie,

87

ckself_locking, cknotself_locking, ckmateforce, ckmateforce2, cksepforce, cksepforce2,

ckstrain2, cklength);

Jseksksoisdook ok ok ksfoloksioiololokok sk ok otk ok

*x%kx INSTANCE: geometry
*************************************/
Makelnstance(geometry, Button);
geometry:X = 384;
geometry:Y = 119;
geometry:Title = "Change Geometry";
geometry:Width = 192;
geometry:Height = 38;
geometry:Visible = TRUE;
geometry:Action = change_geometry;
geometry:ShowBorder = TRUE;
ResetImage (geometry);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

YTUREERTAZURT RE R TSR 1 B0 M0 3 I 1T SR dbas Rt vh e

3

88

%xx INSTANCE: process
sesfesfesteaesiesesiesteoke et seoieateok sk ofe ek s sk e sk akeok ek
Makelnstance(process, Button);
process:X = 384,
process:Y = 203;
process:Title = Design;
process:Width = 192;
process:Height = 38;
process: Visible = TRUE;
process:Action = process;
process:ShowBorder = TRUE;
ResetImage (process);

Sk ok kool deoRskol sk ks sk otk ok ok

**xk TNSTANCE: Textd
sfeakse ke skl sfe sk sesfesfe ek s koot okl e sk sk
Makelnstance(Text4, Text);
Text4:X = 153;
Textd:Y =76;
Text4:Width = 307;
Text4:Height = 38;
Text4:Visible = TRUE;
Text4:Title = "Snap Joint Demonstration"”;
Text4:ShowBorder = TRUE;
Text4:TextSize = 15;
Text4:Transparent = true;
ResetImage (Text4);

*kx% INSTANCE: output_soin
ekt s deokokesk s sk ek stk e ke ok ek ok f
Makelnstance(output_soln, Transcript);
output_soln:X = 655;
output_soln:Y =422;
output_soln:Visible = TRUE;
output_soln:Width = 307;
output_soln:Height = 268;
ResetImage (output_soln);

Jrdskacior ks okl ook Rk ok e ok

*%x*x INSTANCE: output_config
*************************************/

Makelnstance(output_config, Transcript);

output_config:X = 20;

output_config:Y =422;

output_config:Visible = TRUE;

output_config:Width = 307;

output_config:Height = 268;

Resetlmage (output_config);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AR RUTHEA RN H IR) 3N BRI

|

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Makelnstance(output_mat, Transcript);
output_mat:X = 348;

output_mat:Y =422;

output_mat: Visible = TRUE;
output_mat:Width = 307;
output_mat:Height = 268;

ResetImage (output_mat);

Jesolodestskode oo ok etk koo sk ok sk ok ek sk ok

**x*x INSTANCE: select_material

sfestesfole ol s telese ok skofe ke e ke e el ke ok ke e ek ok
Makelnstance(select_material, Button);
select_material:X = 384;
select_material:Y = 161;
select_material:Title = "Select Material";
select_material:Width = 192;
select_material:Height = 38;
select_material:Visible = TRUE;
select_material:Action = select;
select_material:ShowBorder = TRUE;

ResetImage (select_material);

/*************************************

ik INSTANCE: Textl
*************************************/
MakelInstance(Texti, Text);
Textl:X = 20;
Textl:Y = 384;
Textl:Width = 307;
Textl:Height = 38;
Textl:Visible = TRUE;
Textl:Title = "Snap Joint Configuration”;
Textl:ShowBorder = TRUE;
ResetImage (Textl);

[k stk kofede sk e sk ke ok ek ke st e ke e ok

%% INSTANCE: Text3
sesppkasolokaokoksokssk ok ookl ok Rkl ok f

Makelnstance(Text3, Text);

Text3:X = 655;

Text3:Y = 384;

Text3:Width =307,

Text3:Height = 38;

Text3:Visible = TRUE;

Text3:Title = "Design Specifications";

Text3:ShowBorder = TRUE;

ResetImage (Text3);

89

1 MREZTANENM TR N R BRINYA 3 REDA O 2008 LA ey =

90

JresessisioiolesoRsokookoa kool Rkk ok

##xkk TNSTANCE: Text2
sfesstesfe ket ofeaeofe e ek ok ok e el sl ek e e ok ke
MakelInstance(Text2, Text);
Text2:X = 348;
Text2:Y = 384;
Text2:Width = 307;
Text2:Height = 38;
Text2:Visible = TRUE;
Text2:Title = "Material Properties”;
Text2:ShowBorder = TRUE;
ResetImage (Text2);

.............

Makelnstance(Bitmapl, Bitmap);
Bitmap1:X = 153;
Bitmapl:Y =115;
Bitmapl:Visible = TRUE;
Bitmapl:FileName = snconst.bmp;
Bitmapl:FitToScreen = FALSE;
Bitmap1:Width = 307;
Bitmapl:Height = 192;
Resetimage { Bitmapl);
/*************************************

**%k INSTANCE: stop

Makelnstance(stop, Button);
stop:X =384;

stop:Y = 288;
stop:Title = Step;

e 2
stop:Width = 192;
stop:Height = 38;
stop:Visible = TRUE;
stop:Action = Stop;
stop:ShowBorder = TRUE;
ResetImage (stop);

Jeseokstoklofkokokokok ks sk skl s ol ol sk ok

**x% TNSTANCE: configuration

*************************************/
Makelnstance(configuration, Button);
configuration:X = 384;
configuration:Y =76;
configuration:Title = Configuration;
configuration:Width = 192;
configuration:Height = 38;
configuration: Visible = TRUE;
configuration:Action = config;
configuration:ShowBorder = TRUE;

ResetImage (configuration);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

""‘!’l"lmmﬂﬂﬂﬂfﬁlmm EI 780 A DY L2 RS A6 3 123 ¥ s &

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Aok sesesesioiste okl ool e skl ok ook

*dxx INSTANCE: NW_button
*************************************/
Makelnstance{ NW_button, Button);
NW_button:X = 153;
NW_button:Y = 307;
NW_button:Title = "Nominal Wall";
NW_button:Width = 153;
NW_button:Height = 38;
NW _button:Visible = FALSE;
ResetImage (NW_button);

[kt sk ook ek ook ok skt ook ok ko ok ko

*kxk INSTANCE: proi_button

skeeofe ool ok ook skl e ek e kel e ook e e f
Makelnstance(proj_button, Buttor);
proj_button:X = 153;
proj_button:Y = 384;
proj_button:Title = Projections;
proj_button:Width = 153;
proj_button:Height = 38;
proj_button:Visible = FALSE;
proj_button:Action = projections;
ResetImage (proj_button);

ekt sk et s ode e e sk e sesfe skt e sfe s afe seadeobe o el st s ok se e e e e e ok

*%xk INSTANCE: dep_button
Makelnstance(dep_button, Button);
dep_button:X = 153;
dep_button:Y = 460;
dep_button:Title = Depressions;
dep_button:Width = 153;
dep_button:Height = 38;
dep_button:Visible = FALSE;

ResetImage (dep_button);

Jrsesek sk ssesokokok sk sk ol sok ok sok sk etk

ik INSTANCE: sj_button
sk ek kb okt sk ko sk kot sk ok ok ok f
Makelnstance(sj_butten, Button);
sj_button:X = 384;
sj_button:Y = 364;
sj_button:Title = "Snap Joints";
sj_button:Width = 153;
sj_button:Height = 38;
sj._button:Visible = FALSE;
sj_button:Action = snap_joints;
Resetimage (sj_button);

91

"Tﬂﬂﬁmﬁmﬂﬂﬂﬁﬂﬁﬂlﬂmﬁmﬁﬂﬂmmmumﬂmmnnu

Reproduced with permission of the copyright owner.

ekt ok koo ke stk sk sk ke sk ottt stk stk o

*xx% TNSTANCE: ribs_button
sk ek ofe kot ok ek sk ook e stk e s sk sl ek sk ook f
Makelnstance(ribs_button, Button);
ribs_button:X = 384;
ribs_button:Y =422;
ribs_button:Title = Ribs;
ribs_button:Widih = 153;
ribs_button:Height = 38;
ribs_button: Visible = FALSE;
ResetImage (ribs_button);

Fkkx INSTANCE: cant_button

*************************************/
MakelInstance(cant_button, Button);
cant_button:X = 614;
cant_button:Y = 326;
cant_button:Title = Cantilever;
cant_button:Width = 153;
cant_button:Height = 38;
cant_button:Visible = FALSE;
cant_button:Action = start_cant;

ResetImage (cant_button);

[kt sk ke stk ke ok ke skl ke ek ek e kel s ko
*kxk INSTANCE: tor_button
sesfesesiesfeoiesfolesesiolesiesol ok e sl s ok ks sk ek

MakeInstance(tor_button, Button);

tor_button:X = 614;

tor_button:Y =384;

tor_button:Title = Torsional;

tor_button:Width = 153;

tor_button:Height = 38;

tor_button:Visible = FALSE;

ResetImage (tor_button);

.........................

MakelInstance(ann_button, Button);
ann_button:X = 614;

ann_button:Y = 441;
ann_button:Title = Annular;
ann_bution:Width = 153;
ann_button:Height = 38;
ann_button: Visible = FALSE;
ResetImage (ann_button);

Further reproduction prohibited without permission.

92

: Vll WEXR RIS HIR ISR RS B2 pies

93

Jekskstetesoikosokokoesofool ek sk ok ek ook ko

*x3xk INSTANCE: reset
*************************************/
Makelnstance(reset, Button);
reset:X = 384;
reset:Y = 245;
reset:Title = Reset;
reset:Width = 192;
reset:Height = 38;
reset:Visible = TRUE;
reset: Action = reset;
ResetImage (reset);

[tttk ok desesioloiede ook Rk ek sk ko ok ok

*x#i% INSTANCE: Bayblend.FR.1439

*************************************/
Makelnstance(Bayblend.FR.1439, material);
Bayblend.FR.1439:type = "ABS+PC Alloy";
Bayblend.FR.1439:flexural_modulus = 360000;
Bayblend.FR.1439:elongation = 3.5;
Bayblend.FR.1439:mu_plastic_plastic = .75;
Bayblend.FR.1439:mu_plastic_metal = .65;
Bayblend.FR.1439:tensile_stress = 7700;
Bayblend.FR.1439:compressive_stress = 12600;

Ptttk skl ek akak otk ek ek ok ks ok

#iik INSTANCE: Calibre.800.10

Makelnstance(Calibre.800.10, material);
Calibre.800.10:type = PC;
Calibre.800.10:flexural_modulus = 360000;
Calibre.800.10:elongation = 6.5;
Calibre.800.10:mu_plastic_plastic = .55;
Calibre.800.10:mu_plastic_metal = .45;
Calibre.800.10:tensile_stress = 8700;
Calibre.800.10:compressive_stress = 14000;

JAedklekdekok sk e kol otk ok sl ook sl ok ke ok

*#%k INSTANCE: Magnum.3661

*************************************I
Makelnstance(Magnum.3661, material);
Magnum.3661:type = ABS;
Magnum.3661:flexural_modulus = 340000;
Magnum.3661:elongation = 2.3;
Magnum.3661:mu_plastic_plastic =.75;
Magnum.3661:mu_plastic_metal = .65;
Magnum.3661:tensile_stress = S000;
Magnum.3661:compressive_stress = §800;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T UERRISHHI A B R AL @ X423 18 STNERRT RIKE W SN F5uam @ peem T

Jrtesck skl stk skl ok sk ek skl ko

*d%x INSTANCE: Pulse.1725

sfeskeafefe ek e e ke ke ek et ke s e e e ko sk
MakelInstance(Pulse.1725, material);
Pulse.1725:type = "ABS+PC Alloy";
Pulse.1725:flexural_modulus = 400000;
Pulse.1725:elongation = 4.0;
Pulse.1725:mu_plastic_plastic =.75;
Pulse.1725:mu_plastic_metal = .65;
Pulse.1725:tensile_stress = 8400;
Pulse.1725:compressive_stress = 11000;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

A MBEIBEET R R FRONE § RIS FXET0T BiFE I XalYLER 2 170 Gk e

1

[** ALL RULES ARE SAVED BELOW *kf

ook etk sk okl kool ek kol sk skokkok okt sokkoeok |

[tk dooksookokok koo sk sk sk ko ok koK

**%* RULE: ckdesign
seofese s sk sk e st o seoke e sfe sl ek ok e sese e ke ke sk ke ke |
MakeRule(ckdesign, {3,
design:strain < design:allowstrain
And (design:sepforce < cantilever:sepforce Or cantilever:self_locking #= yes
Or cantilever:sepforce == 0)
And (design:mateforce < cantilever:mateforce Or cantilever:mateforce =0
And design:length <= cantilever:maxlength,
design:criteria = good

)
SetRulePriority(ckdesign, 12);

....................

kx RULE: ckstrain

Sheofe e ok o sk seshesbe s o se ke oesfesfe ke e sfe e sfe s seskesbe sesbe e seskesfesle ook ke sk

MakeRule(ckstrain, {],
design:strain > design:allowstrain,

cantilever:undercut = cantilever:undercut / 1.1;
SendMessage(cantilever, calculate);

1)
SetRulePriority(ckstrain, 10);

....................................

Fkk RULE: ckstrain2
*************************************/
MakeRule(ckstrain2, [1,
design:strain > design:allowstrain,

cantilever:length = cantilever:length * 1.1;
SendMessage(cantilever, calculate);

1)
SetRulePriority(ckstrain2, 5);

xx RULE: ckmateforce
sdefesicofesfestoe e etk ool se o e ek sk s sk keok f
MakeRule(ckmateforce, [],
cantilever:mateforce '= 0 And design:mateforce > cantilever:mateforce,

cantilever:length = cantilever:length * 1.1;
SendMessage(cantilever, calculate);
1)

SetRulePriority(ckmateforce, 10);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

AT UEENLNETAMBSE A MDA LY N AN 21 50700 Fe ML slmnmmomss =

ARttt stoke e et ok e ok sk ke stk e s s e ok s koo

*xkk RULE: ckmateforce2
sieste s ke e s ool sk e sfeskese sk ke se sk sl ke ofe e ke e e e e ke f
MakeRule(ckmateforce2, [],)
cantilever:mateforce '= 0 And design:mateforce > cantilever:mateforce,

cantilever:lead_angle = cantilever:lead_angle / 1.1;
SendMessage(cantilever, calculate);

1)
SetRulePriority(ckmateforce2, 5);

[kt skofeole e e stk sk ke skl sk ke ok

**%% RULE: cksepforce
sttt e s e e sk se sk s s s e sk sfesfe ek e ek ek ke
MakeRule(cksepforce,],
cantilever:sepforce != 0 And cantilever:self_locking #=no
And design:sepforce > cantilever:sepforce,

cantilever:length = cantilever:length * 1.1;
SendMessage(cantilever, calculate);

1)
SetRulePriority(cksepforce, 10);

*¥%x RULE: cksepforce2
*************************************/
MakeRule(cksepforce2, {1,
cantilever:sepforce != 0 And cantilever:self_locking #=no
And design:sepforce > cantilever:sepforce,
{
cantilever:return_angle = cantilever:return_angle / 1.1;
SendMessage(cantilever, calculate);
1)
SetRulePriority(cksepforce2, 5);

JRestdetodseatoksiofoksk ke de ke ke ke ok ksl ek ok ok ok

**%x RULE: cklength
*************************************/
MakeRule(cklength, {],
Not(Null?(cantilever:maxlength)) And cantilever:length
> cantilever:maxlength,

cantilever:length = cantileverzmaxlength;
endMessage(cantilever, calculate);
DeactivateRule(cktensile_stress);
DeactivateRule(ckcompressive_stress);
DeactivateRule(ckmateforce);
DeactivateRule(cksepforce);
DeactivateRule(ckstrain2);
1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

C WIS BEINNRN B R HIRIS Rl ed B RN HSURIE REWA FLELES

97

**+x RULE: cktensile
*************************************/
MakeRule(cktensile, [,
design:tensile_stress > cantilever:material_type:tensile_stress
And cantilever:self_locking #= no,
{
cantilever:return_angie = cantilever:return_angle / 1.1;
SendMessage(cantilever, calculate);

1)
SetRulePriority(cktensile, 10);
/*************************************

**x* RULE: ckcompressive
steskeoe ke aeafeofe el o e ek e sk sfe ek se e sk o s s
MakeRule(ckcompressive, [],
design:compressive_stress > cantilever:material_type:compressive_stress,

cantilever:lead_angle = cantilever:lead_angle / 1.1;
SendMessage(cantilever, calculate);
s
SetRulePriority(ckcompressive, 5);
ek desk st sttt sk ke sk ke skt sk sl sk e

*kk RULE: cktensile_stress
*************************************/
MakeRule(cktensile_stress,],
design:tensile_stress > cantilever:material_type:tensile_stress
And cantilever:self_locking #= no,

cantilever:length = cantilever:length * 1.1;
SendMessage(cantilever, calculate);
1)

SetRulePriority(ckiensile_stress, 5);

/*************************************

*kkk RULE: ckcompressive_stress
sfeakeae ekl s ofe sk e seoke sk s e sl s ke el sk sk ok e f
MakeRule(ckcompressive_stress, [],
design:compressive_stress > cantilever:material_type:compressive_stress,

cantilever:length = cantilever:length * 1.1;
SendMessage(cantilever, calculate);

SetRﬁlePriority(ckcompressive_stress, 10);

k%% RULE: smallest_lead_angle

ke o e ke o o e e e e ok ok e fefe o ofe s fe e fesbe o ke ok fesde sfesfeofe e s skesfe sefe ke /

MakeRule(smallest_lead_angle, {1,
cantilever:lead_angle < 10,

cantilever:lead_angle = 10;
PostMessage("Lead angle must be at least 10 deg”);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SendMessage(cantilever, calculate);
1)
SetRulePriority(smallest_lead_angle, 20);

Jresskskskoleiokokskole ookl ol ook ks akok ok

*#*kx RULE: largest_lead_angle
sedaisk it ok sk sk sk e kot kb ok sk ok sk sk sk ok ok sk e e kol |
MakeRule(largest_lead_angle, [,
cantilever:lead_angle > 35,

cantilever:lead_angle = 35;
PostMessage("Lead angle must be less than 35 deg”);
SendMessage(cantilever, calculate);

1)
SetRulePriority(largest_lead_angle, 20);
[k ek stk kst sk sk sk ook ke ko ok ko sk ok ok
**k¥k RULE: ckreturn_angle

MakeRule(ckreturn_angle, [],
cantilever:return_angle < cantilever:lead_angle,
{
cantilever:return_angle = cantilever:lead_angle;
PostMessage("Return angle must not be smaller than lead angie”);
SendMessage(cantilever, calculate);

)
SetRulePriority(ckreturn_angle, 15);
JAek ok stk ko ke ek sk e sk skl ks ek ks ok
*%xx RULE: ckself_locking
*************************************/
MakeRule(ckself_locking, [],
cantilever:self_locking #= yes And cantilever:return_angle < Global:angle,
{
cantilever:return_angle = Global:angle;
PostMessage("Return angle set io minimum allowable”);
DeactivateRule(ckself_locking);
DeactivateRule{ cknotself_locking);

1)
SetRulePriority(ckself_locking, 20);
/*************************************

**kk RULE: cknotself locking
skl ook sksleokok sl skl sl ok destok skl ke sk f
MakeRule(cknotself_locking, [],
cantilever:self_locking #= no And cantilever:return_angle > Global:angle,

PostMessage("Return angle must be smaller”);
cantilever:return_angle =45;

SendMessage(cantilever, calculate);
DeactivateRule(ckself_locking);
DeactivateRule(cknotself_locking);

1)
SetRulePriority(cknotself_locking, 20);

1

R] e RN RN INEIR A B L R s anmmm e e——"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

YRR SR I M AR AR 1 SR Ea B RERA W IARRAR TR =

99

[kt skokstok ke sk ok ek ekl ok sk ok ol ol sk kol ook ko ok ok |

/x* ALL GOALS ARE SAVED BELOW wxf

/***/

Jedessioksok oo ek ek ek ok stk ko kR

*+kx GOAL: gooddesign

MakeGoal(gooddesign,
design:criteria #= good);

/***I

[** ALL FUNCTIONS ARE SAVED BELOW *xf

ekttt ootk ek sk kool e stk ok kst skakfokaok sk ok ok |

/*************************************

....................................

MakeFunction(init,],

{

SetWindowBackground(SESSION, 0, 0, 100);
RemoveWindowMenu(SESSION);
MaximizeWindow(SESSION);
FreezeWindow(SESSION);

reset();

1)

¥x EUNCTION: config

ke ke e ke sfe sk st sfe sk sk sbe sk s e s o e fesde s ok fesfe s s e ke ke s sfe e ke fesdesfe e ok f

MakeFunction(config, {],

SendMessage(Global:feature, init);
SendMessage(Global:feature, output_config);
ClearTranscriptimage(output_soln);
| DR

Ptk ko ok sk sk otk ok sk sk skt sk ko aksok

skeofeofesk s fesfesfese s sfesfesfeofe ok ofe s oe e sesfe e ste s sk skeake e e ke e sk ske sk sk f

MakeFunction(change_geometry, {],
{

SendMessage(Global:feature, change _geometry);
SendMessage(Global:feature, output_config);
ClearTranscriptimage(output_soln);
})s

Jesesolokdesz ol desps ook sk ok otk ok skok ok ok ok ok ok ok ok ok ok

*dkk FUNCTION: select

*************************************/’
MakeFunction(select,],

ClearTranscriptimage(output_mat);

SendMessage(material, select };

If Not(Global:feature:material_type #= "NEW MATERIAL DATABASE")
Then SendMessage (material, output_mat)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O HEGOINORE N KU . B sl el

Else {

SendMessage (material, select);
SendMessage (material, output_mat);

)

*dxk FUNCTION: process

3 ok e e o sk ofeabe ok ok s e s feofe sk ofesbe s s sfe sl sesdeake s sesdesle ke sk ske sk desfeske ke f

MakeFunction(process, [,

PostBusy(ON);

ClearTranscriptimage(output_config);
ClearTranscriptimage(output_soln);
SendMessage(Global:feature, calculate);

design:criteria = NULL;
Assert(cantilever:lead_angle

);

Assert(cantilever:return_angle);
Assert(cantilever:self_locking);
Assert(cantilever:-mateforce);

Assert(design:strain);

SetForwardChainMode{ BESTFIRST);
ForwardChain(gooddesign, Global:RuleSet);
SendMessage(Global:feature, output_config);
SendMessage(Global:feature, output_soln);

write_feadata();
PostBusy(OFF);

kd

*kdk FUNCTION: reset

sieseofe ok ek skl o skl ek ke kel sk ok koo

MakeFunction{ reset, 11,

{
HideImage(Bitmapl);
Hidelmage(configuration);
HideImage(geomeiry);

HideImage(select_material);

HideImage(process);
HideImage(reset);
HideImage(stop);
HideImage(Textl);
HideImage(Text2);
HideImage(Text3);
HideImage(Text4);
HideImage(output_config);
HideImage(output_mat);
HideImage(output_soln);
ShowImage(dep_button);
ShowImage(proj_button);
ShowImage(NW_button);

)

Reproduced with permission of the copyright owner.

Further reproduction prohibited without permission.

100

ST T EMAZIRLIIAI D RIR {1k d A2RR L

*kxk FINCTION: sto
MakeFunction(stop, [,
Exit());

Jresescioloioikksok okl kol ok ok ook ksl dokoeok

*#kxx FUNCTION: projections

sk e skt oh s ke e ko ok et af ek ks se e seoke ke o ek sk
MakeFunction(projections, {l,

{
ShowImage(sj_button);
ShowImage(ribs_button);
1)
JResksiesesoloor ook sk ek stk kokokok ok ok sk ok

*#kx FUUNCTION: snap_joints

stesfeake seseofesfesefe ol sefe e sfeofe e seoe e fe e sk afe s sk s ek e o
MakeFunction(snap_joints, [],

ShowlImage(cant_button);
ShowImage(tor_button);
ShowImage(ann_button);
1)
JAksR sk Rk ks skl ke sk ekt ol ol ek

*xkk FUNCTION: start_cant

MakeFunction(start_cant,],

Global:feature = cantilever;

Text4:Title = "Snap Joint Demonstration”;

Bitmapl:FileName = snconst.bmp;

Text1:Title = "Snap Joint Configuration”;

SetValue{ Global:RuleSet, ckstrain, cktensile_stress, ckcompressive_stress,
ckdesign, cktensile, ckcompressive, smallest_lead_angle,
largest_lead_angle, ckreturn_angle, ckself_locking,
cknotself_locking, ckmateforce, ckmateforce2, cksepforce,
cksepforce2, ckstrain2, cklength };

HideImage(NW_button);

HideImage(proj_button);

HideImage(dep_button);

HideImage(sj_button);

HideImage(ribs_button);

HideImage(cant_button);

HideImage(tor_button);

HideImage(ann_button);

ClearTranscriptimage(output_config);

ClearTranscriptimage(output_mat);

ClearTranscriptImage(cutput_soln);

ShowImage(Text4);

ShowlImage(Bitmap1);

ShowImage(configuration);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

102

Showlmage(geometry);
ShowImage(select_material);
ShowImage(process);
ShowlImage(reset);
ShowlImage(stop);
ShowImage(Textl);
ShowlImage(Text2);
Showlmage(Text3);
ShowImage(Text4);
ShowImage(output_config);
ShowlImage(output_mat);
ShowlImage(output_soln);
1)

MakeFunction(write_feadata, [J,

{
OpenWriteFile(feadata.txt);
WriteLine("K : /CO U 1 snapjoint”);
WriteLine("K :", cantilever:length, cantilever:width, cantilever:thickness,
cantilever:undercut, cantilever:lead_angle, cantilever:return_angle);
WriteLine("K: PRE");
WriteLine("E : **** END OF SESSION ****");
CloseWriteFile();
Execute("dos2aix", "feadata.txt", "feadata.prg”);
1)
Jredoksskskse stk sk ke stk skakook ok kot sk kel

*%%k FUNCTION: loaddb

sk ke kot slok otk koo ek ksl okt ook ek sk ok f

MakeFunction(loaddb, [],

{

Execute (“createdb.bat™);

ForAll [xlmaterial]

Deletelnstance(x);

DBOpenFile(material dbf);

DBGetFieldNames(Giobal:fieldnames);

RemoveFromList(Global:fieldnames, NAME);

GetSlotList(material, Global:slotnames);

DBSetMapParameters(Global:slotnames, Global:fieldnames);
] Global:num = DBGetNumberOfRows();
’ For x [1 Global:num]

{
Global:instance = DBReadCell(x, 1);
Makelnstance(Global:instance, material);
DBMapRowTolnstance(Global:instance);
If (Global:instance:tensile_stress = 0 Or Global:instance:elongation ==0
Or Global:instance:flexural_modulus == 0
Or Global:instance:compressive_stress == 0
Or Global:instance:mu_plastic_plastic =0
Or Global:instance:mu_plastic_metal ==0)

YOG NGANDT SN 18 & ST Pty keds

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘V‘ HREVAUARTHS AR R IFIIZIN B BS1230) FAOSCA Mgy smeaeem s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Then PostInputForm("Enter Missing Material Properties for "
Global:instance, Global:instance:flag, "Delete from material selection list?",
Global:instance:tensile_stress, "Tensile Stress @ yield",
Global:instance:elongation, "Elongation @ yield",
Global:instance:flexural_modulus, "Flexural Modulus",
Global:instance:compressive_stress, "Compressive Stress @ yield",
Global:instance:mu_plastic_plastic, "Coef of Friction (plas/plas)",
Global:instance:mu_plastic_metai, "Coef of Friction (plas/metal)");

If (Not(Null?(Global:instance:flag)) And Global:instance:flag #= yes)
Then DeleteInstance(Global:instance);

1
DBCloseFile(material.dbf);
)

et desiskoieske ook ks ok skl ok ks ok

**4% FUNCTION: setup_graphics

MakeFunction(setup_graphics, [],

{

Global:xscreen = GetScreenWidth();
Global:yscreen = GetScreenHeight();
Button:Width = .30 * Global:xscreen;
Button:Height = .05 * Global:yscreen;
Bitmap:Width = .30 * Global:xscreen;
Bitmap:Height = .25 * Global:yscreen;
Transcript:Width = .30 * Global:xscreen;

Transcript:Height = .35 * Global:yscreen;

Text:Width = .30 * Global:xscreen;
Text:Height = Button:Height;

Button:X = 2 * Bitmap:Width;
configuration:Y = Button:Height * 2;
geometry:Y = Button:Height * 3.1;
select_material:Y = Button:Height * 4.2;
process:Y = Button:Height * 5.3;
reset:Y = Button:Height * 6.4;

stop:Y = Button:Height * 7.5;
Bitmap1:X = Bitmap:Width / 2;
Bitmap1:Y = Button:Height * 3;
Textl:X = Global:xscreen / 50;
Textl:Y = Button:Height * 9;

Text2:X = Textl: X * 2 + Text:Width;
Text2:Y = Button:Height * 9;

Text3:X = Textl:X * 3 + Text:Width * 2;
Text3:Y = Button:Height * 9;

Text4:X = Bitmap:Width / 2;

Text4:Y = Button:Height * 2;
output_config:X = Textl:X;
output_config:Y = Button:Height * 10;
output_mat:X = Text2:X;
output_mat:Y = Button:Height * 10;
output_soln:X = Text3:X;
output_soln:Y = Button:Height * 10;
NW_button:Width = Button:Width / 2;

103

Y CIBTANAAH AT FI IR LR 8 B 1007 Ha e

NW_button:X = Button:Width / 2;

NW_button:Y = Global:yscreen / 2 - Button:Height * 2;

proj_button:Width = Button:Width / 2;

proj_button:X = Button:Width / 2;

proj_button:Y = Global:yscreen/ 2;

dep_button:Width = Button:Width / 2;

dep_button:X = Button:Width / 2;

dep_button:Y = Global:yscreen / 2 + Button:Height * 2;

sj_button:Width = Button:Width / 2;

sj_button:X = Button:Width * 1.25;

sj_button:Y = proj_button:Y - Button:Height / 2;

ribs_button: Width = Button:Width / 2;

ribs_button:X = Button:Width * 1.25;

ribs_button:Y = proj_button:Y + Button:Height;

cant_button:Width = Button:Width / 2;

cant_button:X = Button:Width * 2;

cant_button:Y = proj_button:Y - Button:Height * 1.5;

tor_button:Width = Button: Width / 2;

tor_button:X = Button:Width * 2;

tor_button:Y = proj_button:Y;

ann_button:Width = Button:Width / 2;

ann_button:X = Button:Width * 2;

a}mn_button:Y = proj_button:Y + Button:Height * 1.5;
);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

TR EHAI R R R IS ¥ 12TWd AN SIEN AN

APPENDIX B
RULE TRACE EXAMPLES

TRACE: CONFLICT RESOLUTION / BEST FIRST

- smwoics
'Iov-:}- largest
=]
-~ cksall]
" ckmotsa
sokdasig
tilevi: cksepfo
“cksaplo
ckdexg
ickstrain—cantilav
3 tilav--- ot/angh
L ckdosiy
L okstrain—cantilev

3 Slove--ctizsgn
esign:s, H e ckdzs
* ekstralk $ g =9

da:ign:l\:_. 5' ew
. cantilav--- g \dnign:v:.) :_.ddcs'g !
oksw dacign:r, 4
sl

dasignie]

tilowr.

okdesiy
otstrois

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:return_angle as 75.
Asserting: caniilever:self_locking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE
Evaluating: cantilever:lead_angle
Relevant rules:
smallest_lead_angle largest_lead_angle ckreturn_angle
Testing Rule: smallest_lead_angle FALSE
Testing Rule: largest_lead_angle FALSE
Testing Rule: ckreturn_angle FALSE
Evaluating: cantilever:return_angle
Relevant rules:
ckself_locking cknotself_lockin% ckreturn_angle
Testing Rule: ckself_locking FALS
Testing Rule: cknotself_locking FALSE
Testing Rule: ckreturn_angle FALSE
Evaluating: cantilever:self_locking
Relevant rules:
ckself_locking cknotself_locking ckdesign cktensile cksepforce cktensile_stress
cksepforce2
Testing Rule: ckself_locking FALSE
Testing Rule: cknotself_lecking FALSE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T

TYINIEEMIRIN ST B RIS H M 1 Sy BAeSy

Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE
Evaluating: design:strain
Relevant ruies:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.108000.
design:strain is set to 0.044223.
design:allowstrain is set to 0.027300.
design:mateforce is set to 62.437463.
design:sepforce is set to -124.921366.
design:tensile_stress is set to -1998.741856.

design:compressive_stress is set to 998.999408.

Evaluating: cantilever:undercut

Relevant rules:
NONE

Testing Rule: ckstrain2 TRUE
cantilever:length is set to 0.742500.
design:strain is set to 0.036548.
design:allowstrain is set to 0.027300.
design:mateforce is set to 46.910274.
design:sepforce is set to -93.855440.
design:tensile_stress is set to -1501.687040.

design:compressive_stress is set to 750.564384.

Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.098182.
design:strain is set to 0.033227.
design:allowstrain is set to 0.027300.
design:mateforce is set to 42.647684.
design:sepforce is set to -85.327090.
design:tensile_stress is set o -1365.233440.

design:compressive_stress is set to 682.362944.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Testing Rule: ckstrain2 TRUE
cantilever:length is set 0 0.816750.
design:strain 1s set to 0.027460.
design:allowstrain is set to 0.027300.
design:mateforce is set to 32.041453.
design:sepforce is set to -64.106737.
design:tensile_stress is set to -1025.707792.

design:compressive_stress is set to 512.663248.

Evaluating: cantilever:length
Relevant rules:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

THINIEAA TG M R R LA B £ KRS A1 ES R eaA At

cklength
Testing Rule: cklength TRUE
cantilever:length is set t0 .75.
design:strain 1s set to 0.032565.
design:allowstrain is set to 0.027300.
design:mateforce is set to 41.380015.
design:sepforce is set io -82.790807.
design:tensile_stress is set to -1324.652912.
design:compressive_stress is set to 662.080240.
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.089256.
design:strain is set to 0.029604.
design:ailowstrain is set to 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to -75.262982.
design:tensile_stress is set to -1204.207712.

design:compressive_stress is set to 601.880016.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.081142.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
design:mateforce is set t0 34.199344.
design:sepforce is set 10 -68.424126.
design:tensile_stress is set to -1094.786016.

design:compressive_stress is set to 547.189504.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign TRUE
design:criteria is set to good.
Done forwardChainin g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

SYINIREAIACHAR BN R G0 D i 86 ERae) EEERESERI=0N ® i sremmsrr

108
TRACE: CONFLICT RESOLUTION / BREADTH FIRST

- smales
cksall)
- ckootsa
sckdesig
i chtsash
'lev-::- cksepho
% chtoasd
“ckeapho
sokdesy
Lotstraie—cantilev
H tilav-+- ct/angh
i otdosi
H Lokste/a—cantilev

tilov

com, e ctoss
~ ckstr d.sig'l:!‘:.. Slaw
* ok strain—cantilev--- ok/en, “ign:';_. IN ::ddm
" design:r,
e o(':bmo(

cantilow

. . okdesrg
o =
asighie.., oksirom

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:return_angle as 75.
Asserting: cantilever:self_locking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BREADTHFIRST IGNCRE
Evaluating: cantilever:lead_angle
Relevant rules:
smallest_lead_angle largest_lead_angle ckreturn_angle
Testing Rule: smallest_lead_angle FALSE
Testing Rule: largest_iead_angie FALSE
Testing Rule: ckreturn_angie FALSE
Evaluating: cantilever:return_angle
Relevant rules:
ckself_locking cknotself_lockin %ckretum_angle
Testing Rule: ckself_locking FALS
Testing Rule: cknotself_locﬁing FALSE
Testing Rule: ckreturn_angle FALSE
Evaluating: cantilever:self_locking
Relevant rules:
ckself_locking cknotself_locking ckdesign cktensile cksepforce cktensile_stress
cksepforce2
Testing Rule: ckself_locking FALSE
Testing Rule: clmotself_locﬁing FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.108000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SN HERILHTURR ST AR AL QST PARLA RIAATHAMma Rimmessme

design:strain is set to 0.044223.
design:allowstrain is set to 0.027300.
design:mateforce is set to 62.437463.
design:sepforce is set to -124.921366.
design:tensile_stress is set to -1998.741856.

design:compressive_stress is set to 998.999408.

Testing Rule: ckstrain2 TRUE
cantilever:length is set to 0.742500.
design:strain is set to 0.036548.
design:allowstrain is set to 0.027300.
design:mateforce is set to 46.910274.
design:sepforce is set to -93.855440.
design:tensile_stress is set to -1501.687040.

design:compressive_stress is set to 750.564384.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.098182.
design:strain is set to 0.033227.
design:allowstrain is set to 0.027300.
design:mateforce is set to 42.647684.
design:sepforce is set to -85.327090.
design:tensile_stress is set to -1365.233440.

design:compressive_stress is set to 682.362944.

Testing Rule: ckstrain2 TRUE
cantilever:length is set 10 0.816750.
design:strain 1s set to 0.027460.
design:allowstrain is set to 0.027300.
design:mateforce is set to 32.041453.
design:sepforce is set to -64.106737.
design:tensile_stress is set to -1025.707792.

design:compressive_stress is set to0 512.663248.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength TRUE
cantilever:length 1s set tc .75.
design:strain 1s set to 0.032565.
design:allowstrain is set to 0.027300.
design:mateforce is set to 41.380015.
design:sepforce is set to -82.790807.
design:tensile_stress is set to -1324.652912.

design:compressive_stress is set to 662.080240.

Deactivating Rule: ckiensile_stress.
Deactivating Rule: ckcompressive_stress.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

CIINMRESEATHNAR A B ISR 3 X563 1854325

Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: ckiength FALSE
Evaluating: design:strain
Relevantrules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.089256.
design:strain is set to 0.029604.
design:allowstrain is set to 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to -75.262982.
design:tensile_stress is set to -1204.207712.
design:compressive_stress is set to 601.880016.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.081142.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
design:mateforce is set to 34.199344.
design:sepforce is set to -68.424126.
design:tensile_stress is set to -1094.786016.
design:compressive_stress is set to 547.189504.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign TRUE
design:criteria is set to good.
Testing Rule: ckstrain FALSE
Done i?orwardChaining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

P HREOSILOYESIN O A X H IS B DA ERISJARNEAATTT T

111
TRACE: CONFLICT RESOLUTION / DEPTH FIRST

+ smales
Slaw:- korpost.
" otrefn
- kel 4

lave:
”"cﬁm&a
sckdesip

tlew- ctsaplo
“cksapis
sokdesrgy
icksoaie—cantlev
H tilav--- otiangt
H ctdessg
i H cantlew-- ot/angd
eslgn.v.,.‘d‘) B : cAdosig

designs, / tilow
* otstrom—cantilev--- o/ . oty
£4 \d a o5, K
signe, o, low

ncign:l'{_. . <

d 18]
asign: ot

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:return_angle as 75.
Asserting: cantilever:self_locking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: DEPTHFIRST IGNORE
Evaluating: cantilever:iead_angle
Relevant rules:
smallest_lead_angle largest_lead_angle ckreturn_angle
Testing Rule: smallest_leag_an gle FnLS‘ E
Testing Rule: largest_lead_angle FALSE
Testing Rule: ckreturn_angle FALSE
Evaluating: cantilever:return_angle
Relevant ruies:
ckself_locking cknotself_locldné ckreturn_angle
Testing Rule: ckself_locking FALS
Testing Rule: cknotself_locking FALSE
Testing Rule: ckreturn_angle FALSE
Evaluating: cantilever:self_locking
Relevant rules:
ckself_locking cknotself_locking ckdesign cktensile cksepforce cktensile_stress
cksepforce2
Testing Rule: ckself_locking FALSE
Testing Rule: cknotself_locking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.108000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SYTURRILRARIKED G IR B ISUAY IR D8I (195

design:strain is set to 0.044223.
design:allowstrain is set to 0.027300.
design:mateforce is set to 62.437463.
design:sepforce is set to -124.921366.
design:tensile_stressis set to -1998.741856.
design:compressive_stress is set to 998.999408.
Evaluating: caniilever:undercui
Relevant rules:
NONE
Testing Rule: ckstrain2 TRUE
cantilever:lengtn is set to 0.742500.
design:strain 15 set to 0.036548.
design:allowstrain is set to 0.027300.
design:mateforce is set to 46.910274.
design:sepforce is set to -93.855440.
design:tensile_stressis set to -1501.687040.
design:compressive_stress is set to 750.564384.
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.098182.
design:strain is set to 0.033227.
design:allowstrain is set to 0.027300.
design:mateforce is set to 42.647684.
design:sepforce is set to -85.327090.
design:tensile_stressis set to -1365.233440.

design:compressive_stress is set to 682.362944.

Evaluating: cantilever:undercut

Relevant mies:
NONE

Testing Rule: ckstrain2 TRUE
cantilever:length is set to 0.816750.
design:strain 1s set to 0.027400.
design:allowstrain is set to 0.027300.
design:mateforce is set to 32.041453.
design:sepforce is set to -64.106737.
design:tensile_stressis set to -1025.707792.

design:compressive_stress is set to 512.663248.

Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength TRUE
cantilever:iength 1s set to .75.
design:strain 1s set to 0.032565.
design:allowstrain is set to 0.027300.
design:mateforce is set to 41.380015.
design:sepforce is set to -82.790807.
design:tensile_stress is set to -1324.652912.

design:compressive_stress is set to 662.080240.

Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

] !T“l REDIFELH A RS B KT HT AL ISR Er

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.089256.
design:strain is set to 0.029604.
design:allowstrain is set to 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to -75.262982.
design:tensile_stress is set to -1204.207712.
design:compressive_stress is set to 601.880016.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevani rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.081142.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
design:mateforce is set to 34.199344,
design:sepforce is set to -68.424126.
design:tensile_stress is set to -1094.786016.
- dczsigp:compre;‘ssive_st:ess is set to 547.189504.
Relevantgrules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign TRUE
design:criteria is set to good.
Done forwardChaining,

113

S THRSTOATITIRA TN E IR B IS BIGREs nadan s

TRACE: CONFLICT RESOLUTION / SELECTIVE

s smali
e Jarge:
“ctren
-]
tile chaot
sokdos
Sie- cises
“otsep
sckdes

des-gr:‘_ oks
“cksiro

: tile
: ctdes
H ilo
: jotaes
" ckstra osigr:.‘:_ ok . tils
kst os-gn,.:. oAsw . :;d’das]
kst a:ugv-,...: kst H tile

esigr, s okdes
~ otst .

" ok dcslgr,.: ckstra
“ckstra

“otsrs

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:return_angle as 75.
Asserting: cantilever:self_locking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: SELECTIVE IGNORE
Evaluating: cantilever:lead_angle
Relevant rules:
smallest_lead_angle largest_lead_angle ckreturn_angle
Testing Rule: smaﬂest_leag_zmgle FALSE
Testing Rule: largest_lead_angle FALSE
Testing Rule: ckreturn_angle FATSE
Evaluating: cantilever:return_angle
Relevant rules:
ckself_locking cknotself_locking ckreturn_angle
Testing Rule: ckself_locking FALS
Testing Rule: cknotself_locking FALSE
Testing Rule: ckreturn_angle FAT.SE
Evaluating: cantilever:self_locking
Relevant rules:
ckself_locking cknotself_locking ckdesign cktensile cksepforce cktensile_stress
cksepforce2
Testing Rule: ckself_locking FALSE
Testing Rule: cknotself_locking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE
Evaluating: design:strain
Relevant rules:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

RN s

l ‘ MBRABUFNIRRAY 1IN 3 81 R ZNUE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set io 0.108000.
design:strain is set to 0.044223.
design:allowstrain is set to 0.027300.
design:maieforce is set to0 62.437463.
design:sepforce is set to -124.921366.
design:tensile_stress is set to -1998.741856.
design:compressive_stress is set to 998.999408.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.098182.
design:strain is set to 0.040204.
design:allowstrain is set to 0.027300.
design:mateforce is set to 56.763125.
design:sepforce is set to -113.568472.
design:tensile_stress is set to -1817.095552.

design:compressive_stress is set to 908.210000.

Evaluating: cantilever-undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.089256.
design:strain is set to 0.036548.
design:allowstrain is set to 0.027300.
design:mateforce is set to 51.601302.
design:sepforce is set to -103.240985.
design:tensile_stress is set to -1651.855760.

design:compressive_stress is set to 825.620832.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantiiever:undercut is set to 0.081142.
design:strain is set to 0.033227.
design:allowstrain is set to 0.027300.
design:mateforce is set to 46.912454,
design:sepforce is set to -93.859800.
design:tensile_stress is set to -1501.756800.

design:compressive_stress is set to 750.599264.

Evaluating: cantilever:undercut
Relevant rules:

115

MRS USANRA R R LURRE) K5 B L PR B SR A B RN 8 U0 on i =~ T e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever-undercut is set to 0.073765.
design:strain is set to 0.030207.
design:allowstrain is set to 0.0273C0.
design:mateforce is set to 42.648585.
design:sepforce is set to -85.328893.
design:tensile_stress is set to -1365.262288.

design:compressive_stress is set to 682.377360.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.067059.
design:strain is set to 0.027457.
design:allowstrain is set to 0.027300.
design:mateforce is set to 38.765922.
design:sepforce is set to -77.560678.
design:tensile_stress is set to -1240.970848.

design:compressive_stress is set to 620.254752.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.060963.
design:strain is set to 0.024961.
design:allowstrain is set to 0.027300.
design:mateforce is set to 35.241877.
design:sepforce is set to -70.509966.
design:tensile_stress is set to -1128.159456.

design:compressive_stiess is set to 563.870032.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign cksirain ckstrain2
Testing Rule: ckdesign TRUE
design:criteria is set to good.
Done forwardChaining.

116

i} ‘ MO HFINAR IR BB RARTEDFSR

TRACE: CHECK RETURN ANGLE

sckdesiy
ictsraia—cantiov
3 tilov--- ct/eogh
setdesi;
L. ckstrain—cantilav
§ Glevr-- ot/angd

e:ugme._z sottesiy

H
d-:ign:c::. tilowvs
* ckstraie— cantilev-+- ct/en L f ko2
e esign:s, . Rt]
he d m(m o

o:ign:r':..

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:return_angle as 50.
Asserting: cantilever:self_locking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE
Evaluating: cantilever:lead_angle
Relevant rules:
smallest_lead_angle largest_lead_angle ckreturn_angle
Testing Rule: smallest_lead_angle FALSE
Testing Rule: largest_lead_angle FALSE
Testing Rule: ckreturn_angle EALSE
Evaluating: cantilever:return_angle
Relevant ruies:
ckself_locking cknotself_locking ckreturn_angle
Testing Rule: ckself_locking TRUE,
cantilever:return_angle is set to 61.189194.
Deactivating Rule: ckself_locking.
Deactivating Rule: cknotself_locﬁing.
Evaluating: cantilever:self_locking
Relevant rules:
ckdesign cktensile cksepforce cktensile_stress cksepforce2
Testing Rule: ckreturn_angle FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Ruie: cksepforce2 FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.108000.
design:strair is set to 0.044223.

design:e:,

otdessy
okstross

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

YNBSS R T BRI BUT.¥ W RILUYS

118

design:allowstrain is set to 0.027300.
design:mateforce is set to 62.437463.
design:sepforce is set to 24241016.666667.
design:tensile_stress is set to 387856266.666672.
design:compressive_stress is set to 998.999408.
Evaluating: cantilever:return_angle
Relevant rules:
clqetum_anl%ll_g
Testing Rule: ckreturn_angle FALSE
Testing Rule: ckstrain2 TRUE
cantilever:length is set to 0.742500.
design:strain 1s set to 0.036548.
design:allowstrain is set to 0.027300.
design:mateforce is set to 46.910274.
design:sepforce is set to 18212667.333333.
design:tensile_stress is set to 291402677.333328.
design:compressive_stress is set to 750.564384.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: cantilever:length
Relevant rules:
ckiength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.098182.
design:strain is set to 0.033227.
design:allowstrain is set to 0.027300.
design:mateforce is set to 42.647684.
design:sepforce is set to 16557739.333333.
design:tensile_stress is set to 264923820,333328,
design:compressive_stress is set to 682.362944.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Testing Rule: ckstrain2 TRUE
cantilever:length is set to 0.816750.
design:strain 1s set to 0.027460.
design:allowstrain is set to 0.027300.
design:mateforce is set to 32.041453.
design:sepforce is set to 12439925.666667.
design:tensile_stress is set to 199038810.666672.
design:compressive_stress is set to 512.663248.
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength TRUE
cantilever:length 1s set t0 .75.
design:strain 1s set to 0.032565.
design:allowstrain is set to 0.027300.
design:mateforce is set to 41.380015.
design:sepforce is set to 16065573.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

"J] MHELLGPRNM NI EEY 1T-120 B Ta(E] KIRSFR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design:tensile_stress is set to 257049168.
design:compressive_stress is set to 662.080240.
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Ruile: cksirain2.
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.089256.
design:strain is set to 0.029604.
design:allowstrain is set 10 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to 14604797.
design:tensile_stress is set to 233676752.
design:compressive_stress is set to 601.880016.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.081142.
design:strain is set to 0.026914.

design:allowstrain is set to 0.027300.
design:mateforce is set to 34199344,
design:sepforce is set to 13277715.666667.
design:tensile_stress is set to 212443450.666672.
design:compressive_stress is set to 547.189504.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign TRUE
design:criteria is set to good.
Done torwardChaining.

119

- MRS AR W B H LA k S R QIR RAmEEE ST

TRACE: NOT SELF-LOCKING

- &males

'lw-:; -dargest.
" cretur
ilaw: oL/
- cknotse

sokdesrg
i chtaasd
i lews: ctsapk
*ckrepha
sckdessy
éd':m—mnﬁlcv
F tilav-- ct/angh
i s
H ;. ckstroi—cantilev

RPN

design:¢.

osigais, 1"“-cuaﬂ§
dosign:a:,. : Slow
ok a—cantilev---ot/eng : f -okdesig
~otss dnsign!r':_' ok .<

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:return_angle as 50.
Asserting: cantilever:self_locking as no.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE
Evaluating: cantilever:lead_angle
Relevant rules:
smallest_lead_angle largest_lead_angle ckreturn_angle
Testing Rule: smallest_lead_angle FALSE
Testing Rule: largest_lead_angie FALSE
Testing Rule: ckreturn_angle FALSE
Evaluating: cantilever:return_angle
Relevant rules:
ckself_locking cknotself_lockin% ckreturn_angle
Testing Rule: ckself_locking FALS
Testing Rule: cknotself_locﬁing FALSE
Testing Rule: ckreturn_angle FALSE
Evaluating: cantilever:self_locking
Relevant rules:

cantilew
ckdesiy

designze:
esignel]

ckself_locking cknotself_locking ckdesign cktensile cksepforce cktensile_stress

cksepforce2
Testing Rule: ckself_locking FALSE
Testing Rule: cknotself_locking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.108000.
design:strain is set to 0.044223.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

1 HAERLVENRA R Y RIS JOMEN riadan

design:allowstrain is set to 0.027300.

design:mateforce is set to 62.437463.

design:senforce is set to 155.242146.

design:tensile_stress is set to 2483.874336.

design:compressive_stress is set to 998.999408.
Evaluating: cantilever:undercut

Reievant rules:

NONE

Testing Rule: ckstrain2 TRUE
cantilever:length is set to 0.742500.
design:strain 1s set to 0.036548.
design:allowstrain is set to 0.027300.
design:mateforce is set to 46.910274.
design:sepforce is set to 116.635931.
design:tensile_stress is set to 1866.174896.
design:compressive_stress is set to 750.564384.

Evaluating: cantilever:length

Relevant rules:
cklength

Testing Rule: cklength FALSE

Evaluating: design:strain
Relevant rules:

ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE

Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.098182.
design:strain is set to 0.033227.
design:allowstrain is set to 0.027300.
design:mateforce is set to 42.647684.
design:sepforce is set to 106.037590.
design:tensile_stress is set to 1696.601440.

design:compressive_stress is set to 682.362944.

Evaluating: cantilever:undercut

Relevant rules:
NONE
Testing Rule: ckstrain2 TRUE
cantilever:length is set to 0.816750.
design:strain 1s set 10 0.027460.
design:allowstrain is set to 0.027300.
design:mateforce is set to 32.041453.
design:sepforce is set to 79.666656.
design:tensile_stress is set to 1274.666496.

design:compressive_stress is set to 512.663248.

Evaluating: cantilever:length

Relevant rules:
cklength

Testing Rule: cklength TRUE
cantilever:length 1s set to .73.
design:strain 1s set to 0.032565.
design:allowstrain is set to 0.027300.
design:mateforce is set to 41.380015.
design:sepforce is set to 102.885701.
design:tensile_stress is set to 1646.171216.

design:compressive_stress is set to 662.080240.

Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckmateforce.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

S N RAIB2ANEA RN R LIS R KR e ERRS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.089256.
design:strain is set to 0.029604.
design:allowstrain is set to 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to 93.530731.
design:tensile_stress is set to 1496.491696.

design:compressive_stress is set to 601.880016.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.081142.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
design:mateforce is set to 34.199344.
design:sepforce is set to 85.031956.
design:tensile_stress is set to 1360.511296.

design:compressive_stress is set to 547.185504.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign TRUE
design:criteria is set to good.
Done forwardChaining.

122

"f‘ R RN O W P ISR 0 S Ra SUT

TRACE: CHECK LEAD ANGLE

Ssmola
: K -
Gle- Jarges:
jokdesy
{ctsrme—cantilen
! H tilev- ciang
dles { jotdes
% lerge. H Lotstrar—centiln
Sckroriw . £ H
osigns, H

docigns,

dlov--- otiowsy
H ilan
- ok/e 3 otdo;

i \docign.:._ g ad .
da slgm: x<wmle\
design>., ctolaz,

cantilev-

tlev: chnats.
sckdasy,
:':.d'lalrs
tlevi. ckset
* cklens.
‘oksapt

Asserting: cantilever:lead_angle as 50.
Asserting: cantilever:return_angie as 50.
Asserting: cantilever:self_locking as no.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE
Evaluating: cantilever:lead_angle
Relevant rules:
smallest_lead_angle largest lead_angle ckreturn_angle
Testing Rule: smallest_lead_angle FALSE
Testing Rule: largest,_lead_angle TRUE
cantilever:lead_angle is set to 35.
design:strain is set to 0.048645.
design:allowstrain is set to 0.027300.
design:mateforce is set to 68.680781.
design:sepforce is set to 170.765296.
design:tensile_stress is set to 2732.244736.
design:compressive_stress is set to 1098.892496.
Evaluating: cantilever:return_angie
Relevant rules:
ckself_locking cknotsqlf_iocidnéckremm_angle
Testing Rule: ckself_locking FALS
Testing Rule: cknotself_locking FALSE
Testing Rule: ckreturn_angle FALSE
Evaluating: cantilever:self_locking
Relevant rules:
ckself_locking cknotself_locking ckdesign cktensile cksepforce ckiensile_stress
cksepforce2
Testing Rule: ckself_locking FALSE
Testing Rule: cknotself_loc]%ing FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Rule: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HBUQEACLINNE R 12220 8 IR A% LS X

Evaluating: cantilever:lead_angle
Relevant rules:
smallest_lead _angle largest_lead_angle ckreturn_angle
Testing Rule: smallest_leag_angle FAL§E
Testing Rule: largest_lead_angle FALSE
Testing Ruie: ckreturn_angle FALSE
Evaluating: design:sirain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.108000.
design:strain is set to 0.044223.
design:ailowstrain is set to 0.027300.
design:mateforce is set to 62.437463.
design:sepforce is set to 155.242146.
design:tensile_stress is set to 2483.874336.
design:compressive_stress is set to 998.999408.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Testing Rule: ckstrain2 TRUE
cantilever:length is set to 0.742500.
design:strain 1s set to 0.036548.
design:allowstrain is set to 0.027300.
design:mateforce is set 10 46.910274.
design:sepforce is set to 116.635931.
design:tensile_stress is set to 1866.174896.
design:compressive_stress is set to 750.564384.
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.098182.
design:strain is set to 0.033227.
design:allowstrain is set to 0.027300.
design:mateforce is set to 42.647684.
design:sepforce is set to 106.037550.
design:tensile_stress is set to 1696.601440.
design:compressive_stress is set to 682.362944.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Testing Rule: ckstrain2 TRUE
cantulever:length is set t0 0.816750.
design:strain 1s set to 0.027460.
design:allowstrain is set to 0.027300.
design:mateforce is set to 32.041453.
design:sepforce is set to 79.666656.
design:tensile_stress is set to 1274.666496.
design:compressive_stress is set to 512.663248.
Evaluating: cantilever:length

A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

P TRIRNDEIRCT UG RIER B FIABUA R ImomLa sasmmem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Relevant rules:
cklength
Testing Rule: cklength TRUE
cantilever:length 1s set to .75.
design:strain 1s set to 0.032565.
design:allowstrain is set to 0.027300.
design:mateforce is set t0 41.380015.
design:sepforce is set to 102.885701.
design:tensile_stress is set to 1646.171216.
design:compressive_stress is set to 662.080240.
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.089256.
design:strain is set to 0.029604.
design:allowstrain is set to G.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to 93.530731.
design:tensile_stress is set to 1496.491696.

design:compressive_stress is set to 601.880016.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain

Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.081142.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
design:mateforce is set to 34.199344.
design:sepforce is set to 85.031956.
design:tensile_stress is set to 1360.511296.

design:compressive_stress is set to 547.189504.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign TRUE
design:criteria is set to good.
Done forwardChaining.

125

"II SRS PR LARBE T3 N ASY B e

126
TRACE: MAXIMUM MATEFORCE

s Smalle
anlilovi:--laym
> ohrtur
cksall
otaots,
sckdass
i ctumes,
tlevi-- ctsopd
“ctsapt
sokdasy,
iots#ar—cantln

ilov-- ct/ang

Jckdess,

: ctrtrar—cantiles

é ilev--- ot/aog

H jotdasny,

§ .: tley

H sotdosy

H H M e
osi H do:igml'dd’”'
190%, H H . otstroe

‘design3,
okt
* ckstrar—cantilev--- ctlon;]
dasigas,

cantilav

design.".. . desi

osign™,

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:return_angle as 75.
Asserting: cantilever:self_locking as yes.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE
Evaluating: cantilever:lead_angle
Relevant rules:
smallest_lead_angle largest_lead_angle ckreturn_angle
Testing Rule: smallest_lead_angle FALSE
Testing Rule: largest_iead_angle FALSE
Testing Rule: ckreturn_angle EALSE
Evaluating: cantilever:return_angle
Relevant rules:
ckself_locking cknotself_locking ckreturn_angle
Testing Rule: ckself_locking FALSE
Testing Rule: cknotself_locking FALSE
Testing Rule: ckreturn_angle FALSE
Evaluating: cantilever:self_locking
Relevant rules:
ckself_locking cknotself_locking ckdesign cktensile cksepforce cktensile_stress
cksepforce2
Testing Rule: ckself_locking FALSE
Testing Rule: cknotself_locking FALSE
Testing Rule: ckdcsign FALSE
Testing Rule: cktensile FALSE
Testing Rule: ckscpforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 FALSE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TRELIEIVIA MY SIS B ARYERY. RYGAR? R PG 10 5t L6 80 a3 e s ==

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Evaluating: design:strain

Relevant rules:
ckdesign ckstrain ckstrain2

Testing Rule: ckdesign FALSE

Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.108000.
design:strain is set to 0.044223.
design:allowstrain is set to 0.027300.
design:mateforce is set to 62.437463.
design:sepforce is set to -124.921366.
design:tensile_stress is set to -1998.741856.

design:compressive_stress is set to 998.999408.

Evaluating: cantilever:undercut
Relevant rules:

Testing Rule: ckstrain2 TRUE
cantilever:length is set to 0.742500.
design:strain 1s set to 0.036548.
design:allowstrain is set to 0.027300.
design:mateforce is set to 46.910274.
design:sepforce is set to -93.855440.
design:tensile_stress is set to -1501.687040.

design:compressive_stress is set to 750.564384.

Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantiiever:undercut is set to 0.098182.
design:strain is set to 0.033227.
design:aliowstrain is set to 0.027300.
design:mateforce is set to 42.647684.
design:sepforce is set to -85.327090.
design:tensile_stress is set to -1365.233440.

design:compressive_stress is set to 682.362944.

Evaluating: cantilever:undercut

Relevant rules:
NONE

Testing Rule: ckstrain2 TRUE
cantilever:length is set t0 0.816750.
design:strain 1s set to 0.027460.
design:allowstrain is set to 0.027300.
design:mateforce is set to 32.041453.
design:sepforce is set to -64.106737.
design:tensile_stress is sei to -1025.707792.

design:compressive_stress is set to 512.663248.

Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength TRUE
cantilever:length 1s set t0 .75.
design:strain 18 set to 0.032565.
design:allowstrain is set to 0.027300.

127

W

I NERASLRARUAR BRE IR R 1 R Ay

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design:mateforce is set to 41.380015.
design:sepforce is set to -82.790807.
design:tensile_stress is set to -1324.652912.
design:compressive_siress is set to 662.080240.
Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deaciivating Ruie: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.089256.
design:strain is set to 0.029604.
design:allowstrain is set to 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to -75.262982.
design:tensile_stress is set to -1204.207712.
design:compressive_stress is set to 601.880016.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.081142.
design:strain is set to 0.026914,
design:allowstrain is set to 0.027300.
design:mateforce is set to 34.199344.
design:sepforce is set to -68.424126.
design:tensile_stress is set to -1094.786016.
design:compressive_stress is set to 547.189504.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluvating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain FALSE
Evaluating: design:allowstrain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain FALSE
Evaluating: design:mateforce
Relevant rules:
ckdesign ckmateforce2
Testing Rule: ckdesign FALSE

128

Testing Rule: ckmateforce2 TRUE
cantilever:lead_angie is set to 31.818182.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
design:mateforce is set to 29.886331.
design:sepforce is set to -68.424126.
design:tensile_stress is set to -1394.786016.
design:compressive_stress is set to 478.181296.

Evaluating: cantilever:lead_angle
Relevant rules:

smallest_lead_angie largest_lead_angle ckreturn_angle

Testing Rule: smallest_lead_angle FALEE

Testing Rule: largest_lead_angle FALSE

Testing Rule: ckreturn_angle FALSE

Evaluating: design:strain
Relevant rules:

ckdesign ckstrain

1esting Rule: ckdesign TRUE
design:criteria is set to good.

Done forwardChaining.

YV MERRIGRII AU R MR 1243 A X2 K MR T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

TRACE: MAXIMUM MATEFORCE / NOT SELF-LOCKING

s owale
contilev--/argest
~otrotw

2 ctstrae—cantilen

tilew- ot/ang
jokdes
ickstroc—cantiler

Slev-- ctlony
;okdesy,

: H i okdesy
esigni', H H H r’"‘ﬂ"
et g D figns e

* okstrar—cantilev- ck/aa, L H dnsign:
design:, l : A

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:return_angle as 50.
Asserting: cantilever:self_locking as no.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE

Evaluating: cantilever:lead_angle
: :lead_ang
Relevant rules:
smallest_lead_angle largest_lead_angle ckreturn_angle
Testing Rule: smaliest_lead_angle FALSE
Testing Rule: largest_lead_angle FALSE
Testing Rule: ckreturn_angle FALSE
Evaluating: cantilever:return_angle
Relevant rules:
ckself_locking cknotself_iocking ckreturn_angle
Testing Rule: ckself_locking FALSE
Testing Rule: cknotself_locking FALSE
Testing Rule: ckreturn_angle FALSE
Evaluating: cantilever:self_locking
Relevant rules:
ckself_locking cknotself_locking ckdesign cktensile cksepiorce ckiensile_stress
cksepforce2
Testing Rule: ckself_locking FALSE
Testing Rule: cknotself_locking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: cktensile FALSE
Testing Ruie: cksepforce FALSE
Testing Rule: cktensile_stress FALSE
Testing Ruie: cksepforce2 FALSE

k] ‘ MESINAELNAMY R IAKROL H T 5T DA BN RIGE s A rinss 2 s ==~
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

L

il ‘ MR HE R AN E TS § YR PRI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.108000.
design:strain is set to 0.044223.
design:allowstrain is set to 0.027300.
design:mateforce is set to 62.437463.
design:sepforce is set to 155.242146.
design:tensile_stress is set to 2483.874336.
design:compressive_stress is set to 998.999408.
Evaluating: caniilever:undercut
Relevant rules:
NCNE
Testing Rule: ckstrain2 TRUE
cantilever:length is set to 0.742500.
design:strain 1s set to 0.036548.
design:allowsirain is set to 0.027300.
design:mateforce is set to 46.910274.
design:sepforce is set to 116.635S31.
design:tensile_stress is set to 1866.174896.

design:compressive_stress is set to 750.564384.

Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FATSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.098182.
design:strain is set to 0.033227.
design:allowstrain is set to 0.027300.
design:mateforce is set to 42.647684.
design:sepforce is set to 106.037590.
design:tensile_stress is set to 1696.601440.

design:compressive_stress is set to 682.362944.

Evaluating: cantilever:undercut
Relevant rules:
NONE

Testing Rule: ckstrain2 TRUE
canuilever:iength is set to 0.816750.
design:strain 1s set to 0.027460.
design:allowstrain is set to 0.027300.
design:mateforce is set to 32.041453.
design:sepforce is set to 79.666656.
design:tensile_stress is set to 1274.666496.

design:compressive_stress is set to 512.663248.

Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength TRUE
canulever:length 1s set to .75.
design:strain 1s set to 0.032565.
design:allowstrain is set to 0.027300.

131

R} I TN ARAZIIIUNIIMRN MK EETM A B A S R SR R AT IaET

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design:mateforce is set to 41.380015.
design:sepforce is set to 102.885701.
design:tensile_stress is set to 1646.171216.

design:compressive_stress is set 0 662.080240.

Deactivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.
Deactivating Rule: ckstrain2.
Evaluating: cantilever:length
Relevant rules:
ckiength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.089256.
design:strain is set to 0.029604.
design:allcwstrain is set to 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to 93.530731.
design:tensile_stress is set to 1496.491696.

design:compressive_stress is set to 601.880016.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE

cantilever:undercut is set to 0.081142.
design:strain is set to 0.026914,
design:allowstrain is set to 0.027300.
design:mateforce is set to 34.199344.
design:sepforce is set to 85.031956.

design:tensile_stress is set to 1360.511296.

design:compressive_stress is set to 547.189504.

Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain FALSE
Evaluating: design:allowstrain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain FALSE
Evaluating: design:mateforce
Relevant rules:
ckdesign ckmateforce2
Testing Rule: ckdesign FALSE

132

AECSHRANRAT IININ I ISy EXRWVA R MR anssmens o &

Truen.s

Testing Rule: ckmateforce2 TRUE
cantilever:lead_angle is set to 31.818182.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
design:mateforce is set to 29.886331.
design:sepforce is set to 85.031956.
design:tensile_stress is set io 1360.511256.
design:compressive_stress is set to 478.181296.

Evaluating: cantilever:lead_angle
Relevant rules:

smallest_lead_angle largest_lead_angle ckreturn_angle

Testing Rule: smallest_lead_angle FALSE

Testing Rule: largest_lead_angle FALSE

Testing Rule: ckreturn_angle FALSE

Evaluating: design:strain
Relevant rules:

ckdesign ckstrain

Testing Rule: ckdesign TRUE
design:criteria is set to good.

Done torwardChaining.

T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

P RIEANA I ANIAHM S IIFAAGA . B aDI DG LT sl i e

TRACE: MAXIMUM SEPARATING FORCE

»smale
ﬁlm{f-laym
oo
tlow: ctsal
* chnots.
1okdaz,
ictiens.
 Asopi—cunlilov-- ey
> otrees
'Iw::m:('om
“otrotw
jokdasy,
1 m-: _éd:rm—eunfilc\
% i tilev- oblong
ko 1588

H i tilen
designs, ;okdosy,
ok tilew--ctlang_, . § feantilas
T kst daci H schkdess
acigns., ot ! Ik fon
design>, <

designri:

Asserting: cantilever:lead_angle as 35.
Asserting: cantilever:return_angle as 50.
Asserting: cantilever:self_locking as no.
Asserting: design:strain as 0.048645.

Forward Chaining: 17 Rules.
Mode: BESTFIRST IGNORE
Evaluating: cantilever:lead_angle
Relevant rules:
smallest_lead_angle largest_lead_angle ckreturn_angle
Testing Ruie: smallest_leag angle FALSE

Testing Rule: largest_lead_angle FALSE
Testing Rule: ckreturn_angle FATSE
Evaluating: cantilever:return_angle
Relevant rules:
ckself_locking cknotself_locking ckreturn_angle
Testing Rule: ckself_locking FALSE
Testing Rule: cknotself_locking FALSE
Testing Rule: ckreturn_angie FALSE
Evaluating: cantilever:self_locking
Relevant rules:
ckself_locking cknotself_locking ckdesign cktensile cksepforce cktensile_stress

cksepforce2
Testing Rule: ckself_locking FALSE
Testing Rule: cknotself_locking FALSE
Testing Rule: ckdesign FALSE
Testing Rule: ckiensile FALSE
Testing Rule: cksepforce TRUE

cantilever:length is set to 0.742500.

design:strain 1s set to 0.040203.

design:allowstrain is set to 0.027300.

design:mateforce is set to 51.601557.

design:sepforce is set to 128.300157.

design:tensile_stress is set to 2052.802512.

design:compressive_stress is set to 825.624912.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

okdesy

134

135

Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cktensile_stress FALSE
Testing Rule: cksepforce2 TRUE
cantilever:return_angle is set to 45.454545.
design:strain is set to 0.040203.
design:allowstrain is set to 0.027300.
design:mateforce is set to 51.601557.
design:sepforce is set to 90.079478.
design:tensile_stress is set to 1441.271648.
design:compressive_stiess is set to 825.624912.
Evaluating: cantilever:return_angle
Relevant rules:
ckself_locking cknotself_locking ckreturn_angle
Testing Rule: ckself_locking FALSE
Testing Rule: cknotself_locking FALSE
Testing Rule: ckreturn_angle FALSE
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain ckstrain2
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.108000.
design:strain is set to 0.036548.
design:allowstrain is set to 0.027300.
design:mateforce is set to 46.910274.
design:sepforce is set to 81.890028.
design:tensile_stress is set to 1310.240448.
design:compressive_stress is set to 750.564384.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Testing Rule: ckstrain2 TRUE
cantilever:length is set to 0.816750.
design:strain 1s set to 0.030205.
design:allowstrain is set io 0.027300.
design:mateforce is set to 35.244432.
design:sepforce is set to 61.525276.
design:tensile_stress is set to 984.404416.
design:compressive_stress is set to 563.910912.
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength TRUE
cantilever:length is set to .75.
design:strain 1s set to 0.035820.
design:allowstrain is set to 0.027300.
design:mateforce is set to 45.516109.
design:sepforce is set to 79.456270.
design:tensile_stress is set to 1271.300320.
design:compressive_siress is set to 728.257744.
Deaciivating Rule: cktensile_stress.
Deactivating Rule: ckcompressive_stress.
Deactivating Rule: ckmateforce.
Deactivating Rule: cksepforce.

TEREESHELINICH AR RV, 0 80P SlsiRiuna

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MamsNIZEYENURISENT /33103 KK s R

A

Deactivating Rule: ckstrain2.
Evaluating: cantilever:length
Relevant rules:
cklength
Testing Rule: cklength FALSE
Evaluating: design:strain
Relevani rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.098182.
design:strain is set to 0.032565.
design:allowstrain is set to 0.027300.
design:mateforce is set to 41.380015.
design:sepforce is set to 72.236000.
design:tensile_stress is set to 1155.776000.
design:compressive_stress is set to 662.080240.
Evaluating: cantilever:undercut
Relevant ruies:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.089256.
design:strain is set to 0.029604.
design:allowstrain is set to 0.027300.
design:mateforce is set to 37.617501.
design:sepforce is set to 65.667879.
design:tensile_stress is set to 1050.686064.
design:compressive_stress is set to 601.880016.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign FALSE
Testing Rule: ckstrain TRUE
cantilever:undercut is set to 0.081142.
design:strain is set to 0.026914.
design:allowstrain is set to 0.027300.
design:mateforce is set to 34.199344.
design:sepforce is set to 59.700893.
design:tensile_stress is set to 955.214288.
design:compressive_stress is set to 547.189504.
Evaluating: cantilever:undercut
Relevant rules:
NONE
Evaluating: design:strain
Relevant rules:
ckdesign ckstrain
Testing Rule: ckdesign TRUE
design:criteria is set to g0od.
Done torwardChaining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

APPENDIX C
EDIT PROGRAM

DECLARE SUB STRMOD (NSTRGS)
OPEN "G:\KAPPA\SNAP\DATABAS\REPORT.TXT" FOR INPUT AS #1
OPEN "G:\KAPPA\SNAP\DATABASWMATERIAL.TXT" FOR OUTPUT AS #2
FORI=1TO7

INPUT #1, LINES$
NEXTI

DO WHILE NOT EOF(1)
INPUT #1, LINES
NAME1$ = RTRIMS(MIDS(LINES, 1, 16))
NAME2$ = RTRIM$(MIDS$(LINES, 17, 16))
NTYPES$ = RTRIM$S(MIDS$(LINES, 33, 51))
NMOD = VAL(MIDS$(LINES, 84, 11))
ELCNG = VAL(MIDS$(LINES, 95, 11))
TSTRESS = VAL(MIDS$(LINES, 106, 11))
CSTRESS = VAL(MIDS$(LINES, 117, 11))
CALL STRMOD(NAMEL1S$)
CALL STRMOD(NAME?2S)
NAMES = NAME1S$ + NAME2S$
IF NTYPES = "Polypropylene” THEN
MUPP = 4
MUPM = .25
. ELSEIF NTYPE$ = "Polystyrene" THEN
MUPP = .5
MUPM = 4
ELSEIF NTYPES$ = "Styrene Acrylonitrile” THEN
MUPP = .55
MUPM = 45
ELSEIF NTYPES$ = "Polycarbonate” THEN
MUPP = .55
MUPM = 45
ELSEIF NTYPES = "Acrylonitrile Butadiene Styrene” THEN
MUPP = .75
MUPM = .65
ELSEIF NTYPES = "Polyvinyl Chloride” THEN
MUPP = .6
MUPM = .55
ELSEIF NTYPES$ = "Acrylonitrile Butadiene Styrene + PC Alloy" THEN
MUPP = .65
MUPM =.55

137

B "Wﬁmﬁ'ﬁ'ﬁﬂﬂﬂﬂ Rl U RG] B S0l R ATAR IATERASD By actams

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A VRS AIBOGRUZRAITLUAN AUy Ll ppemsmpmmmem—m e

ELSE
MUPP =0
MUPM =0
END IF
WRITE #2, NAMES$, NTYPE$, NMOD, ELONG, MUPP, MUPM, TSTRESS,
CSTRESS
LOOP
CLOSE #1
CLOSE #2
END

SUB STRMOD (NSTRGS$)

FOR NCHAR = 1 TO LEN(NSTRGS)
CHS$ = MID$(NSTRGS$, NCHAR, 1)
IF INSTR(" -()/:", CHS$) THEN
MID$(NSTRGS, NCHAR, 1) ="."
END IF
NEXT NCHAR

END SUB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

TPV NIRENAFHSTIE N IS B RILE MR TR0 LA LPPSATIUS Dot = = =

APPENDIX D
IDEAS SNAP FEATURE

Parameter Name/Number: 1 - LENGTH
Type of Parameter : Prompted
Type of Limit : Min and Max
Type of Units : Length
Prompt: Enter length of snap
Default Value: 10.000
Minimum Value: 0.0010000 Maximum Value: 1.0000E+13
The parameter controls the following entities:
Leaf 1, Extrusion Linear_Dimension_1

Parameter Name/Number: 2 - WIDTH

Type of Parameter : Prompted

Type of Limit : None

Type of Units :Length

Prompt: Enter width of snap

Default Value: -4.0000

The parameter controls the following entities:
Leaf 1, Extrusion Distance in Z

Parameter Name/Number: 3 - THICKNESS
Type of Parameter : Prompted
Type of Limit : Min and Max
Type of Units :Length
Prompt: Enter height of snap
Default Value: 5.0000
Minimum Value: 0.0010000 Maximum Value: 1.0000E+13
The parameter controls the following entities:
Leaf 1, Extrusion Linear_Dimension_3

Parameter Name/Number: 4 - UNDERCUT
Type of Parameter : Prompted
Type of Limit : Min and Max
Type of Units : Length
Prompt: Enter height of undercut
Default Value: 4.0000
Minimum Value: 0.0010000 Maximum Value: 1.0000E+13
The parameter controls the foilowing entities:
Leaf 1, Extrusion Linear_Dimension_4

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- INIBEERIZAR TN N A 1100 H FEIRE 1 X0 RO B S0 A S U 2k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parameter Name/Number: 5 - LEADANGLE

Type of Parameter : Prompted

Type of Limit : None

Type of Units :Length

Prompt: Enter lead angle

Default Value: 45.000

The parameter is referenced by the following parameters:
7-LEADROT

Parameter Name/Number: 6 - RETANGLE

Type of Parameter : Prompted

Typeof Limit :None

Type of Units :Length

Prompt: Enter return angle

Default Value: 45.000

The parameter is referenced by the following parameters:
8- RETROT

Parameter Name/Number: 7 - LEADROT
Type of Parameter : Equational
Type of Limit : Min and Max
Type of Units : None
Equation: 90+LEADANGLE
Last evaluated value: 135.00
Minimum Value: 1.0000E-06 Maximum Value: 180.00
The parameter controls the following entities:
Leaf 1, Extrusion Angular_Dimension_12

Parameter Name/Number: 8 - RETROT
Type of Parameter : Equational
Type of Limit : Min and Max
Type of Units :None
Equation: 180-RETANGLE
Last evaluated value: 135.00
Minimum Value: 1.0000E-06 Maximum Value: 180.00
The parameter controls the following entities:
Leaf 1, Extrusion Angular_Dimension_15

140

L%S s

e ‘ BRI HRENTR RRH VISR U YR LIRYIntas

APPENDIX E
USER EVALUATION FORM

NAME

1. Does the expert system prototype match known design solutions? Give examples.

2. Discuss the data input. Is it self-explanatory? Is the format easy to use?
Do you have any suggestions for changes to the data input?

3. Does the prototype provide enough flexibility in altering the configuration geometry?
Should any other variables be modifiable?

4. Are the appropriate design constraints (strain and maximum mating and separating
forces)considered in the prototype? Would you add any additional constraints?

5. Discuss the output? Is it descriptive? Is the format appropriate?

6. Was the level of instruction adequate?

7. For a non-programmer, do you think the system would be easy to use?

For the extended evaluator
8. Discuss the ease of adding knowledge to the prototype. How easy is it to add new
materials or rules to the system? How easy is it to modify the user interface?

9. Compare the expert system software development tools to other packages that you are
familiar with.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘1_"" UHEUBRHEIN RN RES § EHEY PIERDAMSTINNIDINW AR s

REFERENCES

H. Adeli, ed., Expert Systems in Construction and Structural Engineering, New York, NY:
Chapman & Hall, 1988.

H. Adeli and Y. S. Chen, “Structuring Knowledge and Data Bases in Expert Systems for
Integrated Structural Design,” Microcomputers in Civil Engineering, vol. 4, no. 3, Sept.
1989, 175 - 199.

Hojjat Adeli, Knowledge Engineering, 2 vols, New York: McGraw-Hill, 1990.

R. E. Adler and K. Ishii, “DAISIE: Designer’s Aid for Simultaneous Engineering,”
ASME Computers in Engineering Conference, vol. 1, 1989, 19 - 26.

Janice Aikins, John Kunz, and Edward H. Shortliffe, “PUFF: An Expert System for
Interpretation of Pulmonary Function Data,” Computers and Biomedical Research, vol. 16,
1983, 199 - 208.

R. H. Allen, “Design Guidelines for Expert Systems,” Proceedings of Conference on Al
Springer-Verlag / Computational Mechanics Publications, 1986, 651 - 658.

R.H. Allen, M. G. Boarnet, C. J. Culbert, and R. T. Savely, “Using Hybrid Expert
System Approaches for Engineering Applications,” Engineering with Computers, vol. 2,
1987, 95-110.

Morris Asimow, Introduction to Design , Englewood Cliffs, NJ: Prentice Hall, 1962.
S. D. Bacon and D. C. Brown, “Reasoning about Mechanical Devices: A Top-Down
Approach to Deriving Behavior from Structure, "ASME Computers in Engineering
Conference, vol. 1, 1988, 467 - 472.

David Barnett, Charies Jackson, and James A. Wentworth, “Developing Expert Systems,”
U. S. Department of Transportation Technical Report, 1988.

Avron Barr, Paul Cohen, and Edward Feigenbaum, The Handbook of Artificial
Intelligence, Stanford, CA: HeurisTech Press, 1982.

V. Baya, N. A. Langrana, and Y. Jularia, “Design of a Die in an Extrusion Manufacturing
Process,” ASME Computers in Engineering Conference, vol. 1, 1989, 141 - 149.

Glen L. Beall, “Plastic Part Design for Economical Injection Molding,” Society of the
Plastics Industry Seminar Notes, 1990.

Claude Bedard and Krishnan Gowrl, “Automating Building Design Process with KBES,”
Computing in Civil Engineering, vol. 4, no. 2, April 1990, 69 - 83.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- ANEEIHEAI I A B IR 0 B] KL SEEaH ERR LR NCSR Jumn cus amemeemm =

!

143

James S. Benneit and Robert S. Engelmore, “SACON: A Knowledge-Based Consultant
for Structural Analysis”, IJCAI , 1979, 47 - 49.

P. P. Bonissone and R. M. Tong, “Editorial: Reasoning with Uncertainty in Expert
Systems’, International Journal of Mar:-Machine Studies, vol. 22, no. 3, 1985, 241 - 250.

Borg-Warner Chemicals. Plastics Design Manual. Parkersburg, WV, 1986 - 1988.
Borg-Warner Chemicals. Techniques. Parkersburg, WV, 1986 - 1988.

Ronald J. Brachman, “On the Epistemolcgical Status of Semantic Networks,” N. Findler,
Ed., Associative Networks: Representation and Use of Knowledge by Computers, New
York: Academic Press, 1979.

M.A. Bramer, “A Survey and Critical Review of Expert Systems Research,” Introductory
Readings in Expert Systems, Donald Mitchie, ed., 1982, 3 - 29.

M.A. Bramer, “Expert Systems: the Vision and the Reality,” Fourth Technical Conference
of British Computer Society Specialist Group on Expert Systems / Research and
Development in Expert Systems, M.A. Bramer ed., 1984, 1 - 12.

Alan Brody, “The Experts,” Infoworld , June 19, 1989, 59 - 75.

D. C. Brown and B. Chandrasekaran, “An Approach to Expert Systems for Mechanical
Design,” Proceedings Trends and Applications, 1983, 173 - 180.

D. C. Brown and B. Chandrasekaran, “An Expert System for Mechanical Design: A
Progress Report,” ASME Computers in Engineering Conference, vol. 1, 1984, 343-344.

D. C. Brown and B. Chandrasekaran, “Expert Systems for a Class of Mechanical Design
Activity,” Knowledge Engineering in Computer-Aided Design IFIP Proceedings, 1984,
259 - 277.

David C. Brown and B. Chandrasekaran, “Knowledge and Control for a Mechanical
Design Expert System,” Computer, July 1986, 92 -100.

D.C. Brown, “Capturing Mechanical Design Knowledge,” ASME Computers in
Engineering Conference, vol. 2, 1985, 121 - 129.

David C. Brown, “Failure Handling in a Design Expert System,” Computer Aided Design,
vol. 17, no. 9, Nov. 1985, 436 - 441.

D.C. Brown and W.N. Sloan, “Compilation of Design Knowledge for Routine Design
Expert Systems: An Initial View,” ASME Computers in Engineering Conference, vol. 1,
1987, 131 - 136.

J.P. Brown, J.H. Clinton, and G.E. Nevill, “Managing Subproblem Interactions in
Preliminary Mechanical Design,” ASME Computers in Engineering Conference, vol. 1,
1989, 265 - 272.

Bruce G. Buchanan and Edward A. Feigenbaum, “DENDRAL and Meta-DENDRAL:
Their Applications Dimension,” Artificial Intelligence, vol. 11, August 1978, 5-24.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

"f] HEERIREN TR IE B H $1524L 0 BItva] B3 DRAN LA

144

B. G. Buchanan, et al., “Constructing an Expert System,” Building Expert Systems, F.
Hayes-Roth, D. A. Waterman, and D. B. Lenat, eds., 1983, 127- 168.

Bruce G. Buchanan and Edward H. Shortliffe, Rule Based Expert Systems, Reading, MA:
Addison-Wesley, 1984.

Bruce G. Buchanan, “What Do Expert Systems Offer the Scicnice of AI?” Applications of
Expert Systems, vol. 2, J. Ross Quinlan, ed., 1989, 11 - 35.

B. Chandrasekaran, “Towards a Taxonomy of Problem Solving Types,” AI Magazine,
Winter/Spring 1983, 9 - 17.

B. Chandrasekaran, “Generic Tasks in Knowledge-Based Reasoning: High-Level
Building Blocks for Expert System Design,” JEEE Expert, Fall 1986, 23 - 30.

F.S. Chehayeb, J. J. Connor, and J. H. Slater, “An Environment for Building Engineering
Knowledge Based Systems,” Applications of Knowledge Based Systems to Engineering
Analysis and Design / Winter Annual Meeting ASME, 1985, 9 - 28.

J. C. H. Chung, R. L. Cook, D. Patel, and M. K. Simmons, “Feature-Based Geometry
Construction for Geometric Reasoning,” ASME Computers in Engineering Conference,
vol. 1, 1988, 497 - 504.

CIME Staff Report, “Al Pays Off in Flexible Design System,” Mechanical Engineering,
April 1989, 68 - 72.

Jonathan S. Colton and John L. Dascanio, II, “An Integrated, Intelligent Design
Environment,” Engineering with Computers, vol. 7, 1991, 11 - 22.

Michael J. Coombs, Developments in Expert Systems, Orlando, FL:Academic Press, 1984.
Robert Cramer, Notes on Snap-Fit Module, 1987.

J. J. Cunningham and J. R. Dixon, “Designing with Features: The Origin of Features,”
ASME Computers in Engineering Conference, vol. 1, 1989, 237 - 243.

Randall Davis and Jonathon King, “An Overview of Producticn Systems,” Machine
Intelligence, vol. 8, 1977, 300 - 332.

R. Davis, “Where Are We and Where Do We Go from Here?,” Al Magazine, Spring 1982,
3-22.

Michelie Dibble, “How to Get the Most from Plastics Technical Centers,” Machine Design,
Sept. 24, 1992, 58 - 64.

J.R. Dixon arnd M. K. Simmons, “Expert Systems for Engineering Design: Standard V-
Belt Design as an Example of the Design-Evaluate-Redesign Architecture,” ASME
Computers in Engineering Conference, vol. 1, 1984, 332 - 337.

J. R. Dixon, M. K. Simmons, and P. R. Cohen, “An Architecture for Application of
Artificial Intelligence to Design,” ACM /IEEE 21st Design Automation Conference, 1984,
634 - 640.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SRSt Rea s Rl RARaEETmET e

145

1. R. Dixcen and M. K. Simmons, “Expert Systems for Mechanical Design: A Program of
Research,” ASME Design Automation Conference/Design Engineering Division, 1985,1.9.

J. R. Dixon, A. Howe, P.R. Cohen, and M. K. Simmons, “Dominic I: Progress Towards
Domain Independence in Design by Iterative Redesign,” ASME Computers in Engineering
Conference, vol.1, 1986, 199-206.

John R. Dixon, “Artificial Intelligence and Design: A Mechanical Engineering View,”
Fifth National Conference on Artificial Inteliigence / AAAI Proceedings, 1986, 872-877.

John R. Dixon, Eugen C. Libardi,Jr. , Steven C. Luby, Mohan Vaghul, and Melvin K.
Simmons, “Expert Systems for Mechanical Design: Examples of Symbolic
Representations of Design Geometries,” Engineering with Computers, vol. 2, 1987, 1-10.

J. R. Dixon, M. R. Duffey, R. K. Irani, K. L. Meunier, and M. E. Orelup, “A Proposed
Taxonomy of Mechanical Design Problems,” ASME Computers in Engineering
Conference, vol. 1, 1988, 41 - 55.

Richard Duda, John Gaschnig, and Peter Hart, “Model Design in the PROSPECTOR

Consultant System for Mineral Exploration,” Expert Systems in the Micro-electronic Age,
1979, 153 - 167.

Richard Duda and John Gaschnig, “Knowledge-Based Expert Systems Come of Age,”
BYTE, vol. 6, no. 9, Sept. 1981, 238 - 281.

M. R. Duffey and J. R. Dixon, “Automating the Design of Extrusions: A Case Study in
Geometric and Topological Reasoning for Mechanical Design,” ASME Computers in
Engineering Conference, vol. 1, 1988, 505 - 511.

E. I. duPont de Nemours & Co. (Inc.), Polymer Products Department. Engineering
Polymers Design Handbook. Wilmington, DE.

Paul Dvorak, “Keeping Talent with Knowledge Systems,” Machine Design, Aug. 22,
1991, 37 - 42.

Clive L. Dym, “EXPERT SYSTEMS: New Approaches to Computer-aided Engineering,”
Engineering with Computers, vol. 1, 1985, 9-25.

Clive L. Dym and Raymond E. Levitt, Knowledge-Based Systems in Engineering, New
York, McGraw-Hill, 1991.

Clive L. Dym and Raymond E. Levitt, “Toward the Integration of Knowledge for

Engineering Modeling and Computation,” Engineering with Computers, vol. 7, 1951, 209
- 224.

Steven L. Elam and L. A. Lopez, Knowledge Based Approach to Checking Designs for
Conformance with Standards, Ph.D. diss., U of Illinois at Urbana-Champaign, 1988.

L. D. Erman, F. Hayes-Roth, V. Lesser, and D. Reddy, “The HEARSAY-II Speech-
Understanding System: Integrating Knowledge to Resolve Uncertainty,” Computing
Surveys , vol. 12, no. 2, june 1980, 213 - 253.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

: “f\ MERENEEROINE A 18004 MY A B2 B 3 ERE b2 EUSSIEE £ 15 Fas semmer—=mm

146

A. Esterline, D. Rosen, K. Otto, L. Nelson, T. Hessburg, D.R. Riley, and A.G. Erdman,
“A Methodology for Capturing Mechanical Design Expertise,” ASME Computers in
Engineering Conference, vol. 1, 1988, 47 - 55.

P. Fazio, C. Bedard, and K. Gowri, “Knowledge-Based System Approach to Building
Envelope Design,” Computer-Aided Design, vol. 21, no. §, October 1989, 519 - 527.

Edward A. Feigenbaum, “The Art of Artificial Intelligence: Themes and Case Studies of
Knowledge Engineering,” IJCAI 5, 1977, 1014 - 1029.

Edward A. Feigenbaum, Pameia McCorduck, and H. Penny Nii, The Rise of the Expert
Company, New York: Times Books, 1988.

E. A. Feigenbaum, “Expert Systems in the 1980s,” Machine Intelligence, (Infotech State of
the Art Report Series 9, No. 3), A. Bond, ed., 1981, 219 - 229.

E. A. Feigenbaum and P. McCorduck, The Fifth Generation, Addison-Wesley, 1983.

E. A. Feigenbaum, “Knowledge Processing: From File Servers to Knowledge Servers,”
Applications of Expert Systems, vol. 2, J. Ross Quinlan ed., 1989, 3 - 10.

S. J. Fenves, “A Framework for Knowledge Based Finite Element Analysis Assistant,”
Applications of Knowledge Based Systems to Engineering Analysis and Design/ Winter
Annual Meeting ASME, 1985, 1-8.

S. J. Fenves, “What is an Expert System?” Expert Systems in Civil Engineering /
Proceedings ASCE, Technical Council on Computer Practices, 1986, 1-6.

S. J1. Fenves, U. Flemming, C. Hendrickson, M.L. Maher, and G. Schmitt, “Integrated
Software Environment for Building Design and Construction,” Computer-Aided Design,
vol. 22, no. 1, Jan 1990, 27 - 36.

Gavin A. Finn and Kenneth F. Reinschmidt, “Expert Systems in an Engineering-
Construction Firm,” Expert Systems in Civil Engineering / Proceedings ASCE Technical
Council on Computer Practices, 1986, 40 - 54.

Martin Fischer, “Linking CAD and Expert Systems for Constructability Reasoning,”
Proceedings of 5th International Conference on Computing in Civil and Building
Engineering, 1993, 1563 - 1570.

Bruce W.R. Forde, Alan D. Russell, and Siegfried F. Stiemer, “Object-Oriented
Knowledge Frameworks,” Engineering with Computers, vol. 5, 1989, 79 - §9.

Mark S. Fox, “Al and Expert System Myths, Legends, and Facts,” IEEE Expert, Feb
1950, 8 -20.

J. Gaschnig, “Prospector: An Expert System for Mineral Exploration,” Introductory
Readings in Expert Systems, Donald Mitchie, ed., 1982, 47 - 63.

J. Gaschnig, R. Reboh, and J. Reiter, “Development of a Knowledge-Based Expert
System for Water Resources Problems,” SRI Project 1619, SRI International, August,
1981.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘ ‘*1rma AU RH HSnd O B H SR IKIEAR Sim awsax

147

Michael R. Genesereth, “The Role of Plans in Automated Consultation,” IJCAI, 1979, 311
-319.

J. S. Gero, ed., Appiications of Artificial Intelligence in Engineering V, vol. 1 Design,
(Proceedings of the Fifth International Conference) Boston: Springer-Verlag, 1990.

William B. Gevarter, “An Overview of Expert Systems,” NBSIR 82-2505, May 1982.

William B. Gevarter, “Expert Systems: Limited but Powerful,” JEEE Spectrum, August,
1983, 39 - 45.

William B. Gevarter, Intelligent Machines: An Introductory Perspective of Artificial
Intelligence and Robotics, New Jersey: Prentice Hall, 1985.

William B. Gevarter, “The Nature and Evaluation of Commercial Expert System Building
Tools,” Computer, vol. 20, no. 5, May 1987, 24 - 41.

M. Maher Hakim and J. H. Garrett, “A Description Logic Approach for Representing
Engineering Design Standards,” Engineering with Computers, vol. 9, 1993, 108 - 124.

Paul Harmon and David King, Experz Systems: Artificial Intelligence in Business, New
York, NY: John Wiley & Sons, Inc, 1985.

Anna Hart, “Knowledge Elicitation: Issues and Methods,” Computer Aided Design, vol.
17, no. 9, Nov. 1985, 455 - 462.

Frederick Hayes-Roth, Donald A. Waterman, and Douglas B. Lenat, eds., Building
Expert Systems, Reading, MA: Addison-Wesley Publishing Company, Inc, 1983.

Hoechst Celanese Corp, Engineering Plastics Division. Designing with Plastic. Chatham,
NJ, 1989.

David A. Hoeltzel and Wei-Hua Chieng, “Factors that Affect Planning in a Knowledge-
Based System for Mechanical Engineering Design Optimization with Application to the
Design of Mechanical Power Transmissions,” Engineering with Computers, vol. 5, 1989,
47-62.

David Horn, “Expert Systems Emerge from Their Shells,” Mechanical Engineering, April
1989, 64 - 67.

H. Craig Howard and Daniel R. Rehak, “KADBASE: Interfacing Expert Systems with
Databases, “ IEEE Expert, Fall 1989, 65 - 76.

Guo Huang, Derek Sheldon, and Roger Perks, “Concurrent Engineering by Cooperating
Expert Systems,” ASME Design for Manufacturability, vol. 52, 1993, 51 - 56.

Vladimir Hubka, Principles of Engineering Design, London, England: Butterworth
Scientific, 1982.

K. E. Hummel, “Coupling Rule-Based and Object-Oriented Programming for the
Classification of Machined Features,” ASME Computers in Engineering Conference, vol.
1, 1989, 409 - 418.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

V. Daniel Hunt, Artificial Intelligence & Expert Sysitems Sourcebook, New York, NY:
Chapman & Hall, 1986.

James P. Ignizio, Introduction to Expert Systems, New York: McGraw-Hill, 1991.
inteilicorp, Inc. Kappa PC Reference Manual. 1950.
Intellicorp, Inc. Kappa PC User’s Guide. 1990.

K. Ishii and P. Barkan, “Design Compatibility Analysis - A Framework for Expert
Systems in Mechanical Sysytem Design,” ASME Computers in Engineering Conference,
vol. 1, 1987, 95 - 102.

K. Ishii, L. Homnberger, and M. Liou, “Compatibility-Based Design for Injection
Molding,” Concurrent Product and Process Design / Winter Annual Meeting ASME, 1989,
153 - 160.

R. K. Irani, B. H. Kim, and J. R. Dixon, “Integrating CAE, Features, and Iterative
Redesign to Automate the Design of Injection Molds,” ASME Computers in =ngineering
Conference, vol. 1, 1989, 27 - 33.

Peter Jackson, Introduction to Expert Systems, Workingham, England: Addison-Wesley
Publishing Co., 1986.

Taesik Jeong, Thomas Kicher, and Ronald Zab, “A Mechanical Design Framework Based
on Object-Oriented Approach,” ASME Computers in Engineering Conference, 1993, 315 -
324.

Seiji Kameoka, Nobuhiro Haramoto, and Tadamoto Sakai, “Development of an Expert
System for Injection Molding Operations,” Advances in Polymer Techrology, vol. 12, no.
4, 1993, 403 - 418.

Taha Khedro, M. Genersereth, and P. Teicholz, “Agent-Based Framework for Integrated
Facility Engineering,” Engineering with Computers, vol. 9, 1993, 94 - 107.

S.B. Kim and N.P. Suh, “Expert Design System for Injection Molding,” KBES for
Manufacturing / Winter Annual Meeting ASME, 1986, 311 - 325.

F. Kinoglu, D. Riley, and M. Donath, “Knowledge-Based System Model of the Design
Process,” ASME Computers in Engineering Conference, vol. 1, 1986, 181 - 191.

Michael L. Kmetz, CAD/CAE of Piece Parts jor a Specific Manufacturing Process, Ph.D.
diss., University of Wyoming, 1986.

A. S. Kott and J. H. May, “Decomposition vs. Transformation: Case Studies of Two
Models of the Design Process,” ASME Computers in Engineering Conference, vol.1,
1989, 1 - 8.

V.M. Kulkarni, J.R. Dixon, J.E. Sunderland, and M.K. Simmons, “Expert Systems for
Design: The Design of Heat Fins as an Example of Conflicting Subgoals and the Use of
Dependencies,” ASME Computers in Engineering Conference, vol. 2, 1985, 145 - 150.

1) TTEeHAMOOLAUEI N 2 BN B SAIEER LU NEDU B KA e et £ STE TS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MEIG T M. B EIJIERI. B ASL @ e RASIRES arm = wemem o= o

-y ’ TT TN IMEAIA] TA RS

149

A. Senthil kumar, A.Y.C. Nee, and S. Prombanpong, “Expert Fixture-Design System for
an Automated Manufacturing Environment,” Computer-Aided Design, voi. 24, no. 6, June
1692, 316 - 326.

T. H. Kwon and P. A. Weeks, “Expert System Aid for Intelligent Molding Cooling System
Design,” ASME Computers in Engineering Conference, vol.1, 1988, 281 -286.

Alice LaPlante, “Bring in the Expert,” Infoworld, Oct. 1, 1990, 55 - 64.

Jean-Claude Latombe, “Failure Processing in a System for Designing Complex
Assemblies,” IJCAI, 1979, 508 - 515.

H. Lee and T.H. Kwon, “Heuristic Redesign with Numerical Analysis Aids,” ASME
Computers in Engineering Conference, vol. 1, 1989, 131 - 140.

H. H. Lee and J. S. Arora, “Object-Oriented Programming for Engineering Applications,”
Engineering with Computers, vol. 7, 1991, 225 - 235.

K. S. Leung and M. H. Wong, “An Expert-System Shell Using Structured Knowledge,”
Computer, March 1990, 38 - 47.

L. A. Lopez, S. Elam, and K. Reed, “Software Concept for Checking Engineering
Designs for Conformance with Codes and Standards,” Engineering with Computers, vol.
5, 1989, 63 - 79.

S. C-Y. Ly, “Knowledge-Based Expert Systems: A New Horizon of Manufacturing
Automation,” KBES for Manufacturing / Winter Annual Meeting ASME, 1986, 11-23.

K.J. MacCallum and A. Duffy, “An Expert System for Preliminary Numerical Design
Modeliing,” Advances in Engineering Software, vol. 8, no. 4, 1986, 217 - 222.

T A S I A st aver AFIT ot tame TY, TAnr TAnle »? y ;
3. Mackerle, “A Review of Expert systems Development Tools,” Engineerin
> pe P

Computations, vol. 6, March 1989, 2 - 17.

M. L. Maher and S. J. Fenves, “HI-RISE: An Expert System for the Preliminary
Structural Design of High Rise Buildings,” Knowledge Engineering in Compuser-Aided
Design /IFIP Proceedings, 1984, 125 - 134,

Mary Lou Maher, “HI-RISE and Beyond: Directions for Expert Systems in Design,”
Computer Aided Design, Nov. 1985, 420-427.

Mary Lou Maher, “Problem Soiving Using Expert System Techniques,” Expert Systems
in Civil Engineering / Proceedings ASCE Technical Council on Computer Practices, 1986,
7-17.

Mary Lou Maher, “Expert System Components,” Expert Systems for Civil Engineers:
Technology and Application, ASCE, Mary Lou Maher, ed., 1987, 3-14.

M. L Maher, D. Sriram, and S. J. Fenves, “Tools and Techniques for Knowledge Based
Expert Systems for Engineering Design,” Advances in Engineering Software, vol. 6, no.
4, 1984, 178 - 188.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1] TTHEIMUISA KIS RIS 3TN [T XL RN IUMARLANS 4 e A= T

150

Rex Maus and Jessica Keyes, Handbook of Expert Systems in Manufacturing, New York:
McGraw-Hill, 1991.

John McDermott, “R1: A Rule-based Configurer of Computer Systems,” Artificial
Intelligence, 19, 1982, 39 - 88.

K. L. Meunier and J. R. Dixon, “Iterative Respecification: a Computational Model for
Hierarchical Mechanical System Design,” ASME Computers in Engineering Conference,
vol. 1, 1988, 125 - 32.

Donald Michie, “Expert Systems,” The Computer Journal, vol. 23, no. 4, Nov. 1980, 369
- 376.

Donald Michie, ed., Introductory Readings in Expert Systems, Gordon and Breach Science
Publishers, 1982.

Miles, Plastic Snap-Fit Joints, Pittsburgh: Miles Inc., Polymers Division, 1992.

Garth Miller and J. S. Colton, “The Complementary Roles of Expert Systems and Database
Management Systems in a Design for Manufacture Environment,” Engineering with
Computers, vol. 8, 1992, 139 - 149.

M. Minsky, “A Framework for Representing Knowledge,” The Psychology of Computer
Vision , P. Winston, ed., McGraw Hill Book Company, 1975.

Sanjay Mittal and Agustin Araya, “A Knowledge-Based Framework for Design,” National
Conference on Artificial Intelligence AAAI Proceedings, 1986, 856 - 865.

S. Mittal, C. L. Dym, and M. Morjaria, “PRIDE: An Expert System for the Design of
Paper Handling Systems,” Computer, July 1986, 102 - 114.

M. Moijaria, S. Mittal, and C.L. Dym, “Interactive Graphics in Expert Systems for
Engineering Applications,” ASME Computers in Engineering Conference, vol. 2, 1985,
235 -239

J. Mostow, “Toward Better Models of the Design Process,” AT Magazine, vol. 6, no. 1,
Spring 1985, 44 - 57.

A. Newell, “Heuristic Programming: Ili-Structured Problems”, Progress in Operations
Research, Voi. II, Aronofsky, ed., 1969, 360 - 414.

Allen Newell and Herbert A. Simon, Human Problem Solving, New Jersey: Prentice Hall,
1972.

E.H. Nielsen, J.R. Dixon, and M.K. Simmons, “GERES: A Knowledge Based Material
Selection Program for Injection Molded Resins,” ASME Computers in Engineering
Conference, 1986, 255 - 261.

E.H. Nielsen, J.R. Dixon, and G.E. Zinsmeister, “‘Capturing and Using Designer Intent in
a Design-With-Features System,” ASME Design Theory and Methodology Conference,
1991, 95 - 102.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

il l T RERARLAVIZCA DI I R RGA. § A) B YRR KA

151

H. Penny Nii, “The Blackboard Model of Problem-Solving,” A7 Magazine, Summer 1986,
38 - 53.

H. Penny Nii, “Blackboard Systems at the Architecture Level,” Expert Systems with
Applications, vol. 7, no. 1, Jan-Mar 1994, 43 - 54.

Nils J. Nilsson, Principles of Artificial Intelligence, Palo Alto, CA: Tioga Publishing Co.,
1980.

Carl E. Noble, “Solving I1l-Structured Management Problems,” Business, Jan-Feb 1979,
26 - 33.

Robert M. O’Keefe, Osman Balci, and Eric P. Smith, “Validating Expert System
Performance,” IEEE Expert, Winter 1987, 81 - 89.

G. Pahl and W. Beitz, Engineering Design, XK. Wallace, ed., London, England: The Design
Council, Springer-Verlag, 1984.

Dennis Pearce, “A Statistical/Heuristic Approach to Estimating Model Costs.” ANTEC
1989, 364 - 366.

H. E. Pople, J. D. Myers, and R. A. Miller, “DIALOG: A Model of Diagnostic Logic for
Internal Medicine,” IJCAI, 1975, 848 - 855.

Harry E. Pople, “The Formation of Composite Hypotheses in Diagnostic Problem Solving
/ An Exercise in Synthetic Reasoning,” IJCAI, 1977, 1030 - 1037.

M. Ross Quillian, “Semantic Memory,” Semantic Information Processing, M. Minsky, ed.,
1968, 216 - 270.

J.R. Quinlan, “Fundamentals of the Knowledge Engineering Problem,” Introductory
Readings in Expert Sysieins, Donald Michie, ed., 1982, 33 - 46.

J. R. Quinlan, “Inductive Knowledge Acquisition: A Case Study,” Applications of
Expert Systems, vol.1, J. Ross Quinlan, ed., 1987, 157 - 173.

N. Ramchandran, A. Shah, and N.A. Langrana, “Expert System Approach in Design of
Mechanical Components,” ASME Computers in Engineering Conference, vol. 1,1988, 1-
10.

Martin Ramsey, “Gaining Proficiency in Expert Systems,” Mechanical Engineering, April
1989, 73 - 78.

R. H. Rand, Computer Aigetra in Applied Mathematics: An Introduction to MACSYMA.
Research Notes in Mathematics, 94, Boston: Pitman Publishing, 1984.

W. J. Rasdorf, “Perspectives on Knowledge in Engineering Design,” ASME Computers
in Engineering Conference, vol. 2, 1985, 249 - 253.

B. Ravi and M.N. Srinivasan, “Decision Criteria for Computer-Aided Parting Surface
Design,” Computer Aided Design, vol. 22, no. 1, Jan./Feb. 1990, 11 - 18.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 r' WA IR M E 320 LU ISR A SRR R JiR A3 9kd 5 100 e s

152

Daniel R. Rehak and H. Craig Howard, “Interfacing Expert Systems with Design
Databases in Integrated CAD Systems,” Computer Aided Design, Nov. 1985, 443 - 454,

Dave Reiff, “Integral Fastener Design,” Plastics Design Forum, Sept/Oct. 1991, 59 - 63.

D. Rosen, A. Erdman, and D. Riley, “A General Design Knowledge-Based System Shell,
with Application to Dwell Mechanism Design,” ASME Computers in Engineering
Conference, vol. 1, 1987, 29 - 36.

David Rosen, John R. Dixon, Corrado Poli, and Xin Dong, “Features and Algorithms for
Tooling Cost Evaluation in Injection Moulding and Die Casting,” ASME Computers in
Engineering Conference, vol. 1, 1992, 45 - 52.

Michael Rosenman and John Gero, “Design Codes as Expert Systems,” Computer-Aided
Design, vol. 17, no. 9, Nov 1985, 399 - 409.

M. D. Rychener, “Expert Systems for Engineering Design,” Proceedings Trends and
Applications, 1983, 21 - 27.

G. Rzevski, ed., Applications of Artificial Intelligence in Engineering V, vol. 2
Manufacturing and Planning, (Proceedings of the Fifth International Conference) Boston:
Springer-Verlag, 1990.

T.S. Sakthivel and V. Kalyanaraman, “A KBES for Integrated Engineering,” Engineering
with Computers, vol. 9, 1993, 1 - 16.

Mukul Saxena and Rohinton Irani, “Knowledge-Based Parametric Modeling for Nozzles,”
ASME Computers in Engineering Conference, 1993, 385 - 395.

Mukul Saxena and Rohinton Irani, “An Integrated NMT-Based CAE Environment -- Part
II: Applications to Automated Gating Plan Synthesis for Injection Molding,” Engineering
with Computers, voi. 9, 1593, 220 - 230.

Peter M. Schoonmaker, “The Best Laid Plans: Troubleshooting an Expert System,”
Mechanical Engineering, Dec. 1989, 56 - 58.

J. 3. Shah, “Development of a Knowledge Base for an Expert Sysieimn for Design of
Structural Parts,” ASME Computers in Engineering Conference, vol. 2, 1985, 131 - 136.

Aroon Shenoy, “Expert Systems in Plastics Processing,” Materials Engineering, Nov.
1988, 33 - 36.

Edward H. Shortliffe, Computer-Based Medical Consultations: MYCIN, New York:
American Elsevier/North Holland, 1976.

D. Sriram, “Computer-Aided Engineering: The Knowledge Frontier,” Course Notes, MIT,
1988.

D. Sriram, M. L. Mabher, S. J. Fenves, “Knowledge-Based Expert Systems in Structural
Design,” Computers and Structures, vol. 20, no. 1-3, 1985, 1-9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S TN K QORGSO MR U UIDSE DN TIL RN oF L e s T

153

D. Sriram et al., “Knowledge-Based System Applications in Engineering Design:
Research at MIT,” AI Magazine, Fall 1989, 79 - 96.

Sally Steadman, “An Integrated Expert System for Engineering Design,” 6th International
Conference on Artificial Intelligence and Expert Systems (In press).

Sally Steadman and Kynric M. Pell, “Expert Systems in Engineering Design: An
Application for Injection Molding of Plastic Parts,” The Journal of Intelligent
Manufacturing (In press).

Luc Steels, “Components of Expertise,” AT Magazine, Summer 1990, 28 - 49.

M. Stefik, J. Aikins, R. Balzer, J. Benoit, L. Bimbaum, E Hayes-Roth, and E. Sacerdoti,
“The Organization of Expert Systems: A Tutorial,” Artificial Intelligence, 18(2), March
1982, 135 - 173.

Mark Stefik and Danial G. Bobrow, “Object-Oriented Programming: Themes and
Variations,” AI Magazine, Winter 1985, 40 - 62.

J. Stutz and R.L. Kashyap, “Improving Variant Design of Mechanical Systems through
Functional Relationships,” ASME Computers in Engineering Conference, vol. 1, 1989,
151 - 159.

Anthony Stylianou, Gregory Madey, and Robert Smith, *“Selection Criteria for Expert
System Shells: A Socio-Technical Framework,” Communications of the ACM, vol. 35,
no. 10, Oct 1992, 30 - 48.

R.P. Ten Dyke and J. C. Kunz, “Object-oriented Programming,” IBM Systems Journal
vol. 28, no. 3, 1989, 465 - 478.

John V. Thomson, “A Water Penetration Expert System using PROLOG with Graphics,”

Appiications of Expert Systems, vol. 1, 5. Ross Quinlan, ed., 1987, 48 - 65.

Deborah L. Thurston, “Concurrent Engineering in an Expert System,” IEEE Transactions
on Engineering Management, vol. 40, no. 2, May 1993, 124 - 135.

David G. Ullman, 7he Mechanical Design Process, New York: McGraw-Hil, Inc., 1992.

David G. Ullman and Thomas A. Dietterich, “Mechanical Design Methodology:
Implications on Future Developments of Computer-Aided Design and Knowledge-Based
Systems,” Engineering with Computers, vol. 2, 1987, 21-29.

JR. Umaretiya and S.P. Joshi, “An Insight into the Expert-Seisd: A Knowledge Based
System for Structural Design,” Engineering with Computers, vol. 8, 1992, 151 - 161.

M. Vaghul, J. R. Dixon, G.E. Zinsmeister, and M. K. Simmons, “Expert Systems in a
CAD Environment: Injection Molding Part Design as an Example,” ASME Computers in
Engineering Conference, vol. 2, 1985, 77 - 82.

J. van Koppen, “A Survey of Expert System Development Tools,” Exper: Systems in
Engineering, D.T. Pham, ed., Springer-Verlag, 1988, 43 - 57.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bl ‘ MV U2 MR IR DRSO Tl vt 237
i

154

R.J. Verrilli, K. L. Meunier, J.R. Dixon, and M.K. Simmons, “Iterative Respecificaiton
Management: A Model for Problem-Solving Networks in Mechanical Design,” ASME
Computers in Engineering Conference, vol. 1, 1987, 103 - 112.

Donald A. Waterman, A Guide to Expert Systems, Reading, MA: Addison-Wesley, 1986.

Shalom M. Weiss and Casimir A. Kulikowski, A Practical Guide to Designing Expert
Systems, Totowa, NJ: Rowman & Allanheld, 1984.

Patrick H. Winston, Artificial Intelligence, Reading, MA: Addison-Wesley, 1984.

Patrick H. Winston, “The Commercial Debut of Artificial Intelligence,” Applications of
Expert Systems, vol.1, J. Ross Quinlan, ed., 1987, 3-20.

Nobuyoshi Yabuki and K. Law, “An Object-Logic Model for the Representation and
Processing of Design Standards,” Engineering with Computers, vol. 9, 1993, 133 - 159.

Jyh-Cheng Yu, Sherveen Lotfi, Kos Isii, and Andrew Trageser, “Process Selection for the
Design of Aluminum Components,” ASME Computers in Engineering Conference, 1993,
181 - 188.

Zhentao Zhang and S. L. Rice, “An Expert System for Conceptual Mechanical Design,”
ASME Computers in Engineering Conference, vol. 1, 1989, 281 - 285.

Zhentao Zhang and Stephen L. Rice, “Conceptual Design: Perceiving the Pattern,”
Mechanical Engineering, July 1989, 58 - 60.

J.R. Zumsteg, D. Pecora, and V.J. Pecora, “A Prototype Expert System for the Design and
Analysis of Composite Material Structures,” ASME Computers in Engineering
Conference, vol. 2, 1985, 137 - 143.

J. R. Zumsieg and D. L. Flaggs, “Knowiedge-Based Analysis and Design Sysieims for
Aerospace Structures,” Applications of Knowledge Based Systems to Engineering
Analysis and Design / Winter Annual Meeting ASME, 1985, 67-79.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

